Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 September 2019 | Story Rulanzen Martin | Photo Stefan Els
Run to Stellenbosch run
The baton #hope took centre stage at the welcoming ceremony of the #UFSRun4MentalHealth team at Coetzenburg stadium in Stellenbosch on 25 September 2019. Pictured here from the left; Susan van Jaarsveld, Burneline Kaars, Arina Engelbrecht and Tertia de Bruin.

The #UFSRun4MentalHealth awareness runners arrived in Stellenbosch on 25 September 2019.

The 21-member team from the Faculty of Health Sciences and Organisational Development and Employee Wellness at the University of the Free State (UFS) had a send-off ceremony on the Bloemfontein Campus on 20 September 2019, on their running journey to Stellenbosch University (SU) to raise awareness for #MentalHealth. The teams ran a distance of 1 075 km at an average speed of 10.03 km/h or a pace of 5 minutes and 59 seconds per km.

"At last, the team has arrived. I am extremely proud of all the runners and I think they have touched many lives, and I think it was a wonderful experience. On behalf of the University of the Free State, welcome to Stellenbosch!," said Susan van Jaarsveld; Senior Director: UFS Human Resources

"We ran 1 075 kilometres from Bloemfontein to Stellenbosch. Yes, we did have some challenges along the road. There were some steeps that were too heavy, and the wind, the dryness, and some gravel roads that we went through. But, because of the team spirit and the inspiration that we maintained during our challenge, we did very well until we got to Stellenbosch this morning," said red team member, Diphate Dimo from the university's Facilities Management. 


Read more:
#UFSRun4MentalHealth: 973 km down, 100 km to go
First #MentalHealth awareness run to Stellenbosch to bring hope
MENTAL HEALTH: It affects all of us
Guardians of Mental Health
#KovsiesCare: HR prioritises mental health in the workplace



News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept