Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Opening exhibition
Some of the artworks from the UFS permanent collection was on exhibition at the Johannes Stegmann Gallery.

When you visit the permanent art collection housed at the art gallery at the Centenary Complex of the University of the Free State (UFS) you will learn something new about South African culture. The 1 200 piece collection is the UFS’s effort to preserve our cultural and historical legacy with poignant works from artist such as Jackson Hlungwane, JH Pierneef, Lucas Sithole, Irma Stern and Azaria Mbatha.

The permanent collection boasts the most diverse collection of contemporary artworks in a public space at a South African university. The artworks are often loaned to significant national and international exhibitions, creating an opportunity for research, teaching and promotion of the UFS. 

The collection has been acquired by the UFS over the past 80 years and comprises paintings, sculptural works, murals, prints, photographic and ceramic works. It includes works of art pioneers from the region and other parts of the country. “The collection hosts one of the most substantial representations of art which was created in the Free State region with works by Frans Claerhout, Pauline Gutter, George Ramagage and Motseokae Klas Thibeletsa,’’ said Angela de Jesus, UFS art curator. It also houses The Human Rights Print Portfolio’ (1996), one of South African’s most significant post-apartheid print portfolios.

Angela de Jesus, UFS art curator and Prof Suzanne Human, chairperson of the UFS Arts Advisory Committee.
 Angela de Jesus, UFS art curator and Prof Suzanne Human, chairperson of the UFS Arts Advisory Committee.
(Photo: Rulanzen Martin)


Recent exhibition showcases works of sensible agendas

Some of the artworks, acquired from 2009-2019, are also currently on exhibition at the Johannes Stegmann gallery. At the opening of the exhibition on 28 August, Prof Suzanne Human, chairperson of the UFS Arts Advisory Committee said the “exhibition does not show all the works but the cohesion between the artworks reveals there is a sensible agenda and sound acquisition criteria.”

The exhibition interrogates the complexities of the reality of a free South Africa. “The UFS collection is a university collection and the works acquired are therefore of scholarly interest. Each work in the exhibition is topical in research circles,” said Prof Human. I have not, I have by Mary Sibande

The exhibition at UFS was open until 4 October 2019

Collection preserving cultural and historic identity 

Contemporary artworks which deal with relevant sociopolitical and environmental issues include works by Kim Berman, Thembinkosi Goniwe, Sam Nhlengethwa, Pippa Skotnes and Diane Victor. 
According to De Jesus the collection “provides an irreplaceable educational reserve for understanding our unique cultural and historical identity.”

“The UFS art collection promotes the importance of visual art for research, teaching, and as a vehicle for critical dialogue. Its aim is to encourage critical thinking and to be reflective of the social, cultural and political diversity of the Free State and South Africa,” she said.

Significant art projects expanded collection’s footprint


Over the years several projects were initiated to enrich the art collection to address gaps in and around the collection to encourage social justice and critical dialogue. As part of the Lotto Sculpture-on-Campus Project (2009-2012) the UFS commissioned 16 public artworks for the Bloemfontein Campus. “Through this project the UFS established the most diverse collection of contemporary artworks in a public space at a South African university, with exceptional works by Willem Boshoff, Noria    
 Mabasa, Willie Bester, Kagiso Patrick Mautloa, Brett Murray and others.” said de Jesus. 

(Picured on the right: I Have Not, I Have by Mary Sibande)


News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept