Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2019 | Story Prof Francis Petersen (UFS Rector and Vice-Chancellor)

In light of the ongoing violence against women, and recent surge in femicide in South Africa, the University of the Free State (UFS) recommits itself to challenge, fight and eradicate all forms of gender-based violence on its campus and in the country.

The recent rape and murder of 19-year-old Media and Film Studies student at the University of Cape Town (UCT), Uyinene Mrwetyana, and the murder of University of the Western Cape (UWC) student, Jesse Hess, are painful reminders of the pervasive nature of misogyny and patriarchal violence that impedes the freedom of women/womxn in South Africa. The UFS stands in solidarity with UCT and UWC, and all other South African universities that are currently steeped in this national crisis pertaining to gender-based violence.

The UFS perceives this as an enduring manifestation of patriarchy that results in women’s/womxn’s subordination, inequality, and violation of bodily integrity. These horrific events underscore the extent to which attempts to address women’s/womxn’s inequality and gender-based violence nationally, and more pertinently at universities, have failed. Recent discussions have underscored the issue of ‘belonging’ as a concern in Higher Education contexts. Belonging is often couched in the language of ‘access’ and ‘transformation’. However, these terms often provide limited substantive change for students who experience a sense of marginalisation and alienation at South African universities. Decolonisation discourse challenges the nature of hegemonic knowledge production that excludes voices of alterity.

Epistemic violence is central to decolonisation discourse referring to the nature of hegemonic knowledge production that excludes voices of alterity. The extent to which knowledge production manifests in universities is, however, not only white and Western, but also male and masculine. South African universities are therefore confronted again with the urgency of recognising and responding to the issue of women’s/womxn’s subordination, with specific emphasis on their safety and freedom.

The UFS is committed to creating a university space where all our students feel that they belong, by broadening current epistemologies and including women’s/womxn’s voices and lived experiences. More pertinently and in a practical manner, curriculum change should include diverse intellectual perspectives and incorporate an ethics of care in teaching practices. The UFS acknowledges that more must be done as a space of higher learning to investigate the causes that underlie the continuance of sexual violence against women/womxn.

On Friday 6 September 2019, the UFS held a day of mourning, standing in solidarity with other universities in their attempt to respond to the present crisis. In mourning Uyinene and Jesse’s death and all other victims and survivors of gender-based violence, the university will critically self-reflect on the multi-layered demand for transformation and consciousness needed for deep change.

The UFS calls on the Department of Higher Education, civil society, the business sector and all others to actively contribute to efforts that will eradicate gender violence. As the UFS, we call specifically on the City of Bloemfontein, the mayor, members of local government, South Africa Police Service and all inhabitants to assist us in making the city safe for all.

Prof Francis Petersen
Rector and Vice-Chancellor
University of the Free State
5 September 2019


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept