Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2019 | Story Thabo Kessah | Photo Thabo Kessah
Eunice Lebona
Eunice Lebona sees herself as a ‘perfectionist procrastinator.’

She is literally the beginning and the end of students’ academic careers on the Qwaqwa Campus, as she welcomes each one of them with an application form when they arrive and ensures that they enjoy their moment in the Rolihlahla Mandela Hall when they graduate. She says she derives all the pleasure and creativity from ‘last-minute crunch’. For those who have interacted with her, she epitomises excellence in the execution of her duties, but many would not know that she is a procrastinator. 

She is Eunice Lebona, Assistant Director: Student Academic Services.

Childhood lesson

‘Ausi Eunice’, as she is affectionately known, credits her grandmother for valuing accountability, her most prized childhood lesson.

“My grandmother raised me and as the oldest grandchild, I learnt the value of accountability at an early age; this has been the cornerstone of my life and career.  Although it is valuable to have support around you, standing on your own two feet is critical, because you will not know when that support might not be available,” she said. 

Working with students comes naturally to her, as she is inspired by progression and achievement.

Personal inspiration

“Getting to higher echelons than previous accomplishments, is my inspiration.  My successes are energisers to achieve the next steps on unique and distinctly different notes than the previous ones. It is this same notion that builds my view, that – as the University of the Free State – we need to see women representation in leadership on a greater scale, as well as respect for their spaces of delivery.”

When asked about the one thing that very few people knew about her, she said: 
“I am a procrastinator. In fact, I am a perfectionist procrastinator. Although procrastination is not good, the last-minute crunch is stimuli to ideas that I would normally not dream of in my comfort mode,” Lebona insists.

What is success?

She defines success as “inner gratification which is the result of the outcomes I had to deliver on”.  She adds: “Witnessing the success and motivation of others from the small contributions I have made in their lives, is all the success that resonates with me. Respect and humility go a long way in attaining success. As indicated earlier, my grandmother played a crucial role in my upbringing and instilled in me the philosophy entrenched in Luke 6:31 that says: ‘Do unto others as you would have them do unto you.’ That has been my motto since her passing away”.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept