Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 April 2020 | Story Prof Francis Petersen | Photo Sonia Small
Prof Francis Petersen.

Our world has changed.  The aspects that we have accepted as daily occurrences, and those that we have taken for granted, are no longer possible.  Anxiety and uncertainty have filled our lives.  After the first infections in China at the end of 2019, the Coronavirus (COVID-19) has continued to spread across the world.  The number of people infected and those who die is increasing daily, and no continent has been able to escape this pandemic.  In addition to the threat to public health, the economic and social disruption threatens the long-term livelihoods and well-being of millions.  It has been said that the rate and global spread of infection by COVID-19, and the impact it could have on a globalised financial, political, and social architecture, sets this particular pandemic apart from any other in modern times.

Not only have governments declared national emergencies and implemented lockdown policies to curb the spread of the disease, they have also taken unprecedented measures to lessen the impact on business, jobs, and the vulnerable communities in our society.   The COVID-19 outbreak has catalysed a crisis, which is questioning the confines of inherited structures that have perhaps lost their intellectual edge and global mandate.

How are universities as global institutions of higher learning managing COVID-19?  

Universities are complex institutions.  I will not attempt to describe the role and purpose of the modern university here – safe to say that the views of John Henry Newman (The Idea of a University) and Wilhelm von Humboldt (his recommended views led to the creation of the University of Berlin) dominated Western thinking about the functions of a university.  Sir Colin Lucas, former Vice-Chancellor of the University of Oxford, remarked “…(universities) are seen as vital sources of new knowledge and innovative thinking, as providers of skilled personnel and credible credentials, as contributors to innovation, as attractors of international talent and business investment into regions, as agents of social justice, and as contributors to social and cultural vitality”.  There is no doubt that universities, through their intellectual knowledge base, can add (and they do) enormously to the science of COVID-19, whether it is developing a new vaccine, modelling, and forecasting skills to understand the spread of the virus in specific regions or innovative methods for supplemental oxygen delivery.  The role played by universities in this context is vast and critical.  

Universities serve a large variety of functions in the delivery of the academic project, which involves teaching, learning, and research to maintain, manage, and develop the physical and digital infrastructure – the engagement with external stakeholders (to foster societal impact) such as alumni, schools, governments, industry, the private sector, commerce, donors, and philanthropic foundations. Many universities are training medical doctors and other healthcare professionals, engaging with academic hospitals and placing them at the forefront of the healthcare system – a very complex organisation to manage, even in times with no crises!

Many universities have disaster management committees that were rapidly activated during COVID-19 to prepare plans for the unexpected.  This pandemic, due to the extent of unfamiliarity and uncertainty thereof, can challenge these efforts and expose limitations in such plans.

It is important that universities have a framework approach of effective coordination, integration, and decision making that is centrally located but can act fast.  Although universities are not the same, there is a common drive for the health, well-being, and safety of staff and students. Typically, such a framework could converge in an Executive Centre (decision-making) or nerve centre, which should preferably be convened by the Vice-Chancellor, and include expertise in areas of scenario planning, project management, science (in this particular case it would be virologists and/or epidemiologists), communication, and institutional culture.  In order for the Executive Centre (EC) to be effective and fast-moving (with urgency and robust thinking), it should be organised around multi-disciplinary task teams, each with key responsibilities:

Teaching and Learning –with the suspension of classes (specifically in countries where there is a lockdown), alternative methods need to be utilised to deliver the academic project, and most universities have moved online (although not online in the purest form, rather emergency remote learning – turning a course virtual in a short period of time, and more importantly, doing it well, is nearly impossible for faculty members accustomed to lecturing in front of students). Based on the extent of the particular lockdown period, academic calendars need to be adjusted. Low-technology approaches to teaching and learning should be developed that are sensitive to the challenges of connectivity, bandwidth, and the type of devices that students use, realising the deep socio-economic inequalities and digital divide in our society. It is critically important to stay in touch with the students, and to provide online assistance with respect to counselling and mental health.

Research – focusing on how experimental research will be conducted during lockdown, how research contracts will be managed during this period and beyond, and whether research funding will be redirected or terminated;

Science – to understand epidemiological developments, verified information on COVID-19 (against the background of fake news);

Operations – mainly focusing on environmental hygiene and the business continuation of the physical and digital plant;

Staff – working remotely, essential services (as defined by government), and crucial university functions, constantly staying in touch with the staff, especially regarding their state of mind (mental health) due to social isolation;  

Students – with a focus on responsible student integration on the re-opening of the campus, where the principle of social distancing need to be adhered to;

Financial and Legal – responsible for financial scenario planning, short-term cash management and risk management, and mitigation; and

Communications – need to be centralised to ensure that it is consistent, correct, rapid and that it takes into account institutional culture when communicating – crises create anxiety, but keeping people informed helps reduce stress.

It is advisable to include a student voice or student input in the Teaching and Learning Task Team, as the living experience of students can thus be captured more accurately, which can enhance strategies.

It is clear that the world will operate differently post-COVID-19 than before the pandemic (‘new normal’); the EC will become the source of scenario planning on how universities will have to ‘re-imagine’ themselves post this pandemic.  It is thus critical to ensure that data, experiences (although a health crisis, an economic, and perhaps a social crisis – an opportunity as a thought experiment), ideas and new networks are captured with a strategic intent and reflection within the EC. Not only has this crisis questioned the neo-liberal economies that traditionally limit government intervention and prioritise market interests, it also asked universities to think differently about their models of teaching, research, and internationalisation, and how co-creation across boundaries and different sectors of the economy need to be imagined.

A crisis is never straightforward to manage, but an Executive Centre-type structure could not only assist universities during this period, but can add valuable strategies to position universities after such a crisis.



Prof Francis Petersen is Vice-Chancellor of the University of the Free State, South Africa. He has extensive experience in scenario planning and systems thinking in both higher education and industry.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept