Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2020 | Story Nonsindiso Qwabe | Photo Supplied
Career development read more
Nonhlanhla Moleleki.

Many students arriving at institutions of higher learning for the first time are often overwhelmed by the vast number of academic programmes available to them. They either end up going for study choices without much thought, or out of desperation. 

Seeing the gap between self-awareness and how it impacts career choices, the UFS introduced the Career Development Programme to teach students more about their chosen careers from the onset.  It was first introduced to first-year students on the Qwaqwa Campus in 2017. 

Project leader and registered counsellor in Student Counselling and Development on the Qwaqwa Campus, Nonhlanhla Moleleki, said the programme was implemented to assist students in better understanding their study choices and the career they have selected, and to better equip them with the relevant knowledge and skills. 

This annual project is once again available to students, and this year it has been extended to the South Campus to assist students enrolled for the University Preparation Programme to choose a study field that fits them best. 

Students are uncertain about their study choices
She said many students often settle for study options without aligning these choices with their interests, personalities, and capabilities, which frustrate them in the long run. 

“Students are often unsure about the career stream they are in and whether it suits them best, leading to poor academic performance. We’ve started receiving bookings from students on the different campuses, which shows that there is a need for the project to be implemented across all campuses. If students choose the right career path and go for options that best suit them, they have a better chance of excelling,” she said. 

Career programme carries long-term benefits for students
The programme runs for eight weeks annually through two-hour sessions per week. Moleleki said during these sessions, students are completing activities on career awareness, understanding individual abilities, and personality styles. The Student Counselling and Development team is also able to connect students with resources related to the industries that interest them.

“We also equip them with coping skills, as well as decision-making processes, in order to choose a career path that is well suited to their own interests, values, and personality styles,” she said.

She said assessments are done in the following areas: self-information, career information, integration of self-information with career knowledge, and career planning.
Moleleki said students who participated in the programme showed an increase in self-awareness and were able to better integrate this into their career choices. “In addition, they are also registered on the national Department of Labour’s database. This connects them with other graduates and potential employers.”

“This programme helps students align themselves with relevant skills and knowledge about the careers that best fit them. It also prepares them for the world of work. It’s not always about the jobs in demand, but it’s about students having a career that they will be happy with.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept