Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2020 | Story Baptiste Becret | Photo Supplied
Baptiste Becret.

Since the approval of the University of the Free State (UFS) internationalisation strategy for 2018-2022, the UFS community and staff members of the Office for International Affairs (OIA) have been working hard to try and realise the goals stated in the strategy. The policy states “the university's’ commitment to developing curricula that are locally relevant, globally competitive and connect to multiple knowledge paradigms”. Furthermore, “We expect that the new internationalisation strategy will advance the international positioning of the university, and synergise the existing rich international activities into intentional, comprehensive internationalisation processes”.

In an effort to realise the said expectations through the university’s inbound mobility programme, the Department of Afrikaans and Dutch, German and French in the Faculty of the Humanities has hired Baptiste Becret, an exchange student from French partner university, Science PO Bordeaux, as French tutor for the first semester of 2020. This collaboration by the two departments endeavours to achieve the university’s vision of developing its students’ international and intercultural competencies through internationalisation at home. Equally, this initiative speaks to a critical aspect of internationalisation, the “purposeful integration of international and intercultural dimensions into the formal curriculum for the UFS students within the domestic learning environment”.

Being the only Frenchman on campus

“I was the only Frenchman on campus and at the university, which I rather enjoyed. I learned at the beginning of this year, in January, that I could share my culture and language by helping students participating in the first- and second-year French courses at the university. For my part, I was attached to the Faculty of the Humanities. I've already had experience as a tutor in France, so I wasn't very stressed at the idea of being in front of a class. I enjoyed trying to teach my mother tongue. My contact with the French teacher was good. He gave me a lot of freedom to do the activities I wanted to do.

I didn't think that passing on my knowledge to the first-year class would be so difficult. Indeed, for some of them, they have never spoken a word of French. But the atmosphere improved from class to class after a shy start. I hope I was able to help them as best I could. In any case, I was very happy to teach them and to assist them in their various difficulties with the language. For the second-year class, the atmosphere was a little different. The class was smaller, the students already knew each other well, and they were pretty close. Additionally, their language level was already good. 

All this to say that being a French tutor was a great experience. It was enriching for both parties (students and me). Of course, I tried to do the best I could, and I took advantage of the free time my schedule gave me to share a little bit of my home country. So, I advise future international students – if they feel comfortable with that – to give it a try. It's only two hours a week with a little bit of extra money. Finally, I would like to thank the International Office for informing me of this opportunity, the people involved in the programme, including my coordinator, the French teacher, and especially the students who have been super cool to me.” 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept