Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 April 2020 | Story Prof Francis Petersen | Photo Sonia Small

The COVID-19 pandemic has created profound disruptions in our economy and society.  Due to the challenges of this pandemic, most universities have decided to move from face-to-face classes to online teaching (more accurately defined as emergency remote teaching and learning) so as to complete the 2020 academic year, and to prevent the spread of the virus.

Online learning vs emergency teaching and learning
Online learning is the result of careful instructional design and planning, using a systematic model for design and development.  With remote emergency teaching and learning, this careful design process is absent.  Careful planning for online learning includes not just identifying the content to be covered, but also how to support the type of interactions that are important to the learning process.  Planning, preparation, and development time for a fully online university course typically takes six to nine months before the course is delivered.

Emergency teaching and learning is a temporary shift of instructional delivery to an alternative delivery mode due to crisis conditions.  Hence, one cannot equate emergency remote teaching and learning with online learning, nor should one compare emergency remote teaching and learning with face-to-face teaching. What is crucial is the quality of the mode of delivery, and although assessment methodologies will differ between face-to-face teaching and remote teaching and learning, the quality of the learning outcomes should be comparable.

Funding to universities 
The financial model used in a South African (residential) university consists of three main income sources: (i) the state or government through a subsidy (the so-called ‘block grant’), (ii) tuition fees, and (iii) third-stream income (which is mainly a cost-recovery component from contract research, donations, and interest on university investments). The National Student Financial Aid Scheme (NSFAS) contributes to the tuition fees through a Department of Higher Education, Science and Innovation Bursary Scheme, providing fully subsidised free higher education and training for poor and working-class South Africans (recipients will typically be students from households with a combined income less than R350 k per annum).  

The negative impact of COVID-19 on the income drivers of the university can, and probably will, be severe.  Although the subsidy from the state or government can be ‘protected’ for a cycle of two to three years through the National Treasury, the pressure on income derived from tuition fees (that component which is not funded through NSFAS) will be increasing, as households would have been affected by the nationwide lockdown and with the economy in deep recession, a significant number of jobs would have been lost. The economic downturn, due to both COVID19 and a sovereign downgrade by all rating agencies, has already negatively impacted local financial markets as well as the global economy. The multiplier effect of this would be that the value of investments and endowments decreases (at the time of writing the JSE was still 20% down compared to the previous year), and philanthropic organisations and foundations will most probably reduce or even terminate ‘givings’ to universities.

Industry, private sector, and commerce will re-assess their funding to universities, whether for research or bursary support.  Overall, it is possible that the income sources for universities can be affected negatively in the short term, but it will definitely have longer-term implications on the financial sustainability of universities.  In this regard, it would be important for universities to perform scenario planning on the long-term impact of COVID-19 on the financial position of the university, and to adjust their strategic plans accordingly.

By Prof Francis Petersen is Rector and Vice-Chancellor of the University of the Free State.
 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept