Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2020 | Story Amanda Tongha | Photo NSFAS

Applications for the National Student Financial Aid Scheme (NSFAS) 2021 are now open.  

The NSFAS application cycle will run for a period of four months starting from 3 August to 30 November 2020. 

NSFAS applications are open to students from poor and working-class backgrounds who wish to further their studies at any public Technical and Vocational Education and Training (TVET) college or university. To qualify for NSFAS funding, the applicant must be a South African citizen; come from a family with a combined annual household income of not more than R350 000; for students with a disability, a combined annual household income of not more than R600 000. 

Applications for 2021 funding will be completed online via the myNSFAS portal as per previous years. 

New applicants need a copy of their ID or birth certificate to register and create a myNSFAS account or profile on the myNSFAS portal. Applicants with existing accounts must log on to their accounts to complete an application. Applicants are not allowed to create more than one profile on the portal. The applicant will be required to give consent to NSFAS to verify their personal information with third parties and will not be able to create a profile without giving this consent. This feature allows NSFAS to conduct a three-step verification process with the Department of Home Affairs (DHA), where an ID number will be linked to the name and surname of the applicant and the parents' details. 

In response to the status quo due to the COVID-19 pandemic, applicants will not be required to submit or upload the consent form; however, they will have to grant consent electronically during the application process, along with accepting the terms and conditions for funding. 

Applicants will, however, still be required to submit their supporting documents, comprising a copy of own ID; parents’/guardian's proof of income; copies of parents’/guardian's ID; and/or Annexure A for applicants with disabilities. 

Qualifying students are urged to make use of this opportunity and apply for funding in time. 

 
 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept