Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2020 | Story Nitha Ramnath | Photo Supplied

A VUCA environment reflects a state of the external world, or external to the leader, community, or nation, as much as it seems to reflect an internal frame of mind. The constant pressure to lead, while being uncertain about the outcomes of your decisions and even fearful of not being in control all the time, are some of the hallmarks of a VUCA world. A good way of thinking about this concept is to view it as the ‘new narrative’ – the volatility, uncertainty, complexity, and ambiguity inherent in today’s world.

Leaders in the 21st century need to steer a country securely through unparalleled, challenging, and stormy circumstances such as food insecurity, political unrest, migration and refugee issues, unemployment, divided societies and prejudice, global warming, and others. Against this introduction, it unfortunately appears as if there is an increase in VUCA problems in the 21st century, and leaders often fail in their attempts to provide solutions to these demanding circumstances. Indeed, it appears as if leaders in the 21st century are actually contributing to VUCA environments. So-called ‘state capture’ and the ‘gangster state’ in South Africa, ‘make America great again’ and ‘America first’ , the Brexit no-deal option, ‘trade wars’, and ‘the deadly coronavirus’ are examples of when leaders did not appear to solve challenges, but rather to intensify them. 

This is the backdrop against which the book, Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments, has been conceptualised – indeed to debate the opportunities that exist amid this chaos. 

Three UFS women academics contributed to this book.

Dr Martha Harunavamwe (Department of Industrial Psychology) has written a chapter on resilience and agility in Zimbabwean higher education.Dr Mareve Biljohn (Department of Public Administration and Management) has written a chapter on leading the self in South Africa’s VUCA local government environments. Prof Liezel Lues (Department of Public Administration and Management) has written a chapter on South Africa’s surviving VUCA environment. She is also one of the editors of the book.

The endorsement written by Prof Petersen, reads: There are various books on leadership, but this book, in navigating today’s volatile, uncertain, complex and ambiguous (VUCA) environment, presents chaos as both an opportunity and possibility in developing ‘selfcare practices’ in leading oneself. Leaders must have the cognitive flexibility to adapt to the unknown in the midst of chaos (and a crisis). Through making sense of leadership approaches in different environments, including the business, private, academic and public sectors, as well as in conflict/post-conflict situations, the book provides a deep insight into leading oneself effectively with innovation and empathy in a VUCA environment – an excellent contribution to self-leadership. (Francis Petersen, Rector and Vice-Chancellor: Top Management, University of the Free State)

The book, published by KR Publishers, will be launched on 27 August 2020. Prof Ebben van Zyl, together with Prof Lues, are the editors of this book: Van Zyl, E, Campbell, A and Lues, L. ed. Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments. Randburg: KR Publishing. ISBN: 978-1-86922-860-6

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept