Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2020 | Story Nitha Ramnath | Photo Supplied

A VUCA environment reflects a state of the external world, or external to the leader, community, or nation, as much as it seems to reflect an internal frame of mind. The constant pressure to lead, while being uncertain about the outcomes of your decisions and even fearful of not being in control all the time, are some of the hallmarks of a VUCA world. A good way of thinking about this concept is to view it as the ‘new narrative’ – the volatility, uncertainty, complexity, and ambiguity inherent in today’s world.

Leaders in the 21st century need to steer a country securely through unparalleled, challenging, and stormy circumstances such as food insecurity, political unrest, migration and refugee issues, unemployment, divided societies and prejudice, global warming, and others. Against this introduction, it unfortunately appears as if there is an increase in VUCA problems in the 21st century, and leaders often fail in their attempts to provide solutions to these demanding circumstances. Indeed, it appears as if leaders in the 21st century are actually contributing to VUCA environments. So-called ‘state capture’ and the ‘gangster state’ in South Africa, ‘make America great again’ and ‘America first’ , the Brexit no-deal option, ‘trade wars’, and ‘the deadly coronavirus’ are examples of when leaders did not appear to solve challenges, but rather to intensify them. 

This is the backdrop against which the book, Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments, has been conceptualised – indeed to debate the opportunities that exist amid this chaos. 

Three UFS women academics contributed to this book.

Dr Martha Harunavamwe (Department of Industrial Psychology) has written a chapter on resilience and agility in Zimbabwean higher education.Dr Mareve Biljohn (Department of Public Administration and Management) has written a chapter on leading the self in South Africa’s VUCA local government environments. Prof Liezel Lues (Department of Public Administration and Management) has written a chapter on South Africa’s surviving VUCA environment. She is also one of the editors of the book.

The endorsement written by Prof Petersen, reads: There are various books on leadership, but this book, in navigating today’s volatile, uncertain, complex and ambiguous (VUCA) environment, presents chaos as both an opportunity and possibility in developing ‘selfcare practices’ in leading oneself. Leaders must have the cognitive flexibility to adapt to the unknown in the midst of chaos (and a crisis). Through making sense of leadership approaches in different environments, including the business, private, academic and public sectors, as well as in conflict/post-conflict situations, the book provides a deep insight into leading oneself effectively with innovation and empathy in a VUCA environment – an excellent contribution to self-leadership. (Francis Petersen, Rector and Vice-Chancellor: Top Management, University of the Free State)

The book, published by KR Publishers, will be launched on 27 August 2020. Prof Ebben van Zyl, together with Prof Lues, are the editors of this book: Van Zyl, E, Campbell, A and Lues, L. ed. Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments. Randburg: KR Publishing. ISBN: 978-1-86922-860-6

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept