Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2020 | Story Nitha Ramnath | Photo Supplied

A VUCA environment reflects a state of the external world, or external to the leader, community, or nation, as much as it seems to reflect an internal frame of mind. The constant pressure to lead, while being uncertain about the outcomes of your decisions and even fearful of not being in control all the time, are some of the hallmarks of a VUCA world. A good way of thinking about this concept is to view it as the ‘new narrative’ – the volatility, uncertainty, complexity, and ambiguity inherent in today’s world.

Leaders in the 21st century need to steer a country securely through unparalleled, challenging, and stormy circumstances such as food insecurity, political unrest, migration and refugee issues, unemployment, divided societies and prejudice, global warming, and others. Against this introduction, it unfortunately appears as if there is an increase in VUCA problems in the 21st century, and leaders often fail in their attempts to provide solutions to these demanding circumstances. Indeed, it appears as if leaders in the 21st century are actually contributing to VUCA environments. So-called ‘state capture’ and the ‘gangster state’ in South Africa, ‘make America great again’ and ‘America first’ , the Brexit no-deal option, ‘trade wars’, and ‘the deadly coronavirus’ are examples of when leaders did not appear to solve challenges, but rather to intensify them. 

This is the backdrop against which the book, Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments, has been conceptualised – indeed to debate the opportunities that exist amid this chaos. 

Three UFS women academics contributed to this book.

Dr Martha Harunavamwe (Department of Industrial Psychology) has written a chapter on resilience and agility in Zimbabwean higher education.Dr Mareve Biljohn (Department of Public Administration and Management) has written a chapter on leading the self in South Africa’s VUCA local government environments. Prof Liezel Lues (Department of Public Administration and Management) has written a chapter on South Africa’s surviving VUCA environment. She is also one of the editors of the book.

The endorsement written by Prof Petersen, reads: There are various books on leadership, but this book, in navigating today’s volatile, uncertain, complex and ambiguous (VUCA) environment, presents chaos as both an opportunity and possibility in developing ‘selfcare practices’ in leading oneself. Leaders must have the cognitive flexibility to adapt to the unknown in the midst of chaos (and a crisis). Through making sense of leadership approaches in different environments, including the business, private, academic and public sectors, as well as in conflict/post-conflict situations, the book provides a deep insight into leading oneself effectively with innovation and empathy in a VUCA environment – an excellent contribution to self-leadership. (Francis Petersen, Rector and Vice-Chancellor: Top Management, University of the Free State)

The book, published by KR Publishers, will be launched on 27 August 2020. Prof Ebben van Zyl, together with Prof Lues, are the editors of this book: Van Zyl, E, Campbell, A and Lues, L. ed. Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments. Randburg: KR Publishing. ISBN: 978-1-86922-860-6

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept