Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2020 | Story Nitha Ramnath | Photo Supplied

A VUCA environment reflects a state of the external world, or external to the leader, community, or nation, as much as it seems to reflect an internal frame of mind. The constant pressure to lead, while being uncertain about the outcomes of your decisions and even fearful of not being in control all the time, are some of the hallmarks of a VUCA world. A good way of thinking about this concept is to view it as the ‘new narrative’ – the volatility, uncertainty, complexity, and ambiguity inherent in today’s world.

Leaders in the 21st century need to steer a country securely through unparalleled, challenging, and stormy circumstances such as food insecurity, political unrest, migration and refugee issues, unemployment, divided societies and prejudice, global warming, and others. Against this introduction, it unfortunately appears as if there is an increase in VUCA problems in the 21st century, and leaders often fail in their attempts to provide solutions to these demanding circumstances. Indeed, it appears as if leaders in the 21st century are actually contributing to VUCA environments. So-called ‘state capture’ and the ‘gangster state’ in South Africa, ‘make America great again’ and ‘America first’ , the Brexit no-deal option, ‘trade wars’, and ‘the deadly coronavirus’ are examples of when leaders did not appear to solve challenges, but rather to intensify them. 

This is the backdrop against which the book, Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments, has been conceptualised – indeed to debate the opportunities that exist amid this chaos. 

Three UFS women academics contributed to this book.

Dr Martha Harunavamwe (Department of Industrial Psychology) has written a chapter on resilience and agility in Zimbabwean higher education.Dr Mareve Biljohn (Department of Public Administration and Management) has written a chapter on leading the self in South Africa’s VUCA local government environments. Prof Liezel Lues (Department of Public Administration and Management) has written a chapter on South Africa’s surviving VUCA environment. She is also one of the editors of the book.

The endorsement written by Prof Petersen, reads: There are various books on leadership, but this book, in navigating today’s volatile, uncertain, complex and ambiguous (VUCA) environment, presents chaos as both an opportunity and possibility in developing ‘selfcare practices’ in leading oneself. Leaders must have the cognitive flexibility to adapt to the unknown in the midst of chaos (and a crisis). Through making sense of leadership approaches in different environments, including the business, private, academic and public sectors, as well as in conflict/post-conflict situations, the book provides a deep insight into leading oneself effectively with innovation and empathy in a VUCA environment – an excellent contribution to self-leadership. (Francis Petersen, Rector and Vice-Chancellor: Top Management, University of the Free State)

The book, published by KR Publishers, will be launched on 27 August 2020. Prof Ebben van Zyl, together with Prof Lues, are the editors of this book: Van Zyl, E, Campbell, A and Lues, L. ed. Chaos is a Gift? Leading Oneself in Uncertain and Complex Environments. Randburg: KR Publishing. ISBN: 978-1-86922-860-6

News Archive

Water erosion research help determine future of dams
2017-03-07

Description: Dr Jay le Roux Tags: Dr Jay le Roux

Dr Jay le Roux, one of 31 new NRF-rated
researchers at the University of the Free State,
aims for a higher rating from the NRF.
Photo: Rulanzen Martin

“This rating will motivate me to do more research, to improve outcomes, and to aim for a higher C-rating.” This was the response of Dr Jay le Roux, who was recently graded as an Y2-rated researcher by the National Research Foundation (NRF).

Dr Le Roux, senior lecturer in the Department of Geography at the University of the Free State (UFS), is one of 31 new NRF-rated researchers at the UFS. “This grading will make it possible to focus on more specific research during field research and to come in contact with other experts. Researchers are graded on their potential or contribution in their respective fields,” he said.

Research assess different techniques
His research on water erosion risk in South Africa (SA) is a methodological framework with three hierarchal levels presented. It was done in collaboration with the University of Pretoria (UP), Water Research Commission, Department of Agriculture, Forestry and Fisheries, and recently Rhodes University and the Department of Environmental Affairs. Dr Le Roux was registered for 5 years at UP, while working full-time for the Agricultural Research Council – Institute for Soil, Climate and Water (ARC-ISCW).

Water erosion risk assessment in South Africa: towards a methodological framework
, illustrates the most feasible erosion assessment techniques and input datasets that can be used to map water erosion features in SA. It also emphasises the simplicity required for application at a regional scale, with proper incorporation of the most important erosion-causal factors.

The main feature that distinguishes this approach from previous studies is the fact that this study interprets erosion features as individual sediment sources. Modelling the sediment yield contribution from gully erosion (also known as dongas) with emphasis on connectivity and sediment transport, can be considered as an important step towards the assessment of sediment produce at regional scale. 
 
Dams a pivotal element in river networks

Soil is an important, but limited natural resource in SA. Soil erosion not only involves loss of fertile topsoil and reduction of soil productivity, but is also coupled with serious off-site impacts related to increased mobilisation of sediment and delivery to rivers.

The siltation of dams is a big problem in SA, especially dams that are located in eroded catchment areas. Dr Le Roux recently developed a model to assess sediment yield contribution from gully erosion at a large catchment scale. “The Mzimvubu River Catchment is the only large river network in SA on record without a dam.” The flow and sediment yield in the catchment made it possible to estimate dam life expectancies on between 43 and 55 years for future dams in the area.
 
Future model to assess soil erosion
“I plan to finalise a soil erosion model that will determine the sediment yield of gully erosion on a bigger scale.” It will be useful to determine the lifespan of dams where gully erosion is a big problem. Two of his PhD students are currently working on project proposals to assess soil erosion with the help of remote sensing techniques.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept