Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2020 | Story Andre Damons | Photo Supplied
Max du Preez, Editor: Vrye Weekblad (top left), was the facilitator was the facilitator for Thursday’s UFS Though-Leader webinar that included Prof Salim Abdool Karim, Director: Centre for the AIDS Programme of Research in South Africa (CAPRISA) and Chair: South African Ministerial Advisory Committee on COVID-19 (top right); Prof Glenda Gray, President and CEO: South African Medical Research Council (SAMRC) (bottom left); and Prof Felicity Burt from the UFS and NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research (bottom right), participated in Thursday’s Though-Leader webinar.

Although the decline in COVID-19 cases is a promising sign for South Africa, there are concerns about a second surge, and the country should not become complacent.

This was the opinion of the three experts who took part in the first Thought-Leader webinar presented by the University of the Free State (UFS) on Thursday, 13 August. The 2020 UFS Thought-Leader Webinar Series, themed 'Post-COVID-19, Post-Crisis', is taking place in collaboration with Vrye Weekblad as part of the Vrystaat Literature Festival’s online initiative, VrySpraak-digitaal.

The panellists included top experts such as Prof Salim Abdool Karim, Director: Centre for the AIDS Programme of Research in South Africa (CAPRISA) and Chair: South African Ministerial Advisory Committee on COVID-19; Prof Glenda Gray, President and CEO: South African Medical Research Council (SAMRC); and the UFS’ Prof Felicity Burt, NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research.
Prof Karim said the downward decline is consistent and the number of patients presenting at hospitals is also declining.
 
Promising trend of decline
“What we are seeing is a promising trend, and it looks like we are on the decline. A question that I am often asked is: Is the worst over? The answer is not clear-cut. We are concerned about the risk of a second surge. If anything – what really concerns me at this stage is a second surge, as I think about how the pandemic may play out over the next few weeks,” said Prof Karim. 

He also referred to countries such as the US, Spain, New Zealand, Vietnam, and South Korea, which are now facing a second surge. 

“We need to be very careful; this is not the time for complacency. We need to maintain all our efforts. If we look at one of the key drivers, it is the need for our economy to restart. We need to get people back to work,” said Prof Karim. 
According to him, we have to look at COVID-19 not as a sprint, but as a marathon. “As we learn to co-exist with this virus, aim for containment; we need to plan for the long term. Even if we get a vaccine, it is unlikely that we will be able to vaccinate a substantial part of our population before the end of next year.” 

“We need to transition from being scared to a situation where we can control our risk. When we know that we can control the risk and then influence the risk, we influence the risk of everyone around us. Part of the new normal is the strategy of mitigation with prevention, plus preventing outbreaks.”

Schools and vaccine development
Prof Gray spoke about whether schools should be open and the role that children play in transmission, how to avoid the second wave, how to adjust our testing, and the exciting news around vaccine development. 

As a paediatrician and a parent, Prof Gray said she believes schools should open. “Children have a different immune response to COVID-19. They have different immune responses to Coronavirus and they probably have less viral-load copies which makes them have milder diseases. They are lucky to have been spared from symptomatic or severe disease,” said Prof Gray. 

According to her, schools need to be de-risked as much as possible, with children and teachers wearing masks, washing hands, making sure that there is good ventilation in the school and that windows are wide open. 

“We also need to know about the comorbidity and ages of teachers, so that we can keep the sick and older teachers out of direct contact. The younger teachers with no comorbidities should be teaching. 

“We also know from our experiences with health workers that transmissions happen in the tearoom where teachers take off their masks and talk. We need to minimise the transmissions in tearooms and protect teachers and parents who are older and have comorbidities.”  

Prof Gray said from data she has seen, schools play a very small role in the transmission of COVID-19; a lot more (transmissions) happen in the community, by commuting, and overcrowded taxis.

Prof Gray agreed with Prof Karim that we should be concerned about a second wave, and that we need to make sure community transmissions are minimised. 

Regarding a vaccine, Prof Gray said a global race is on to find a vaccine. “The more vaccines the better, we want more vaccines to work. The more vaccines, the more affordable they are, and the more doses are available.”

One health approach

During her presentation, Prof Burt said the current response to outbreaks is largely reactive rather than proactive, and “if we have more of a one-health approach, with forecasting, early detection, and a more rapid response, we could have an impact on public health in the future”. 


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept