Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2020 | Story Andre Damons | Photo Supplied
Max du Preez, Editor: Vrye Weekblad (top left), was the facilitator was the facilitator for Thursday’s UFS Though-Leader webinar that included Prof Salim Abdool Karim, Director: Centre for the AIDS Programme of Research in South Africa (CAPRISA) and Chair: South African Ministerial Advisory Committee on COVID-19 (top right); Prof Glenda Gray, President and CEO: South African Medical Research Council (SAMRC) (bottom left); and Prof Felicity Burt from the UFS and NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research (bottom right), participated in Thursday’s Though-Leader webinar.

Although the decline in COVID-19 cases is a promising sign for South Africa, there are concerns about a second surge, and the country should not become complacent.

This was the opinion of the three experts who took part in the first Thought-Leader webinar presented by the University of the Free State (UFS) on Thursday, 13 August. The 2020 UFS Thought-Leader Webinar Series, themed 'Post-COVID-19, Post-Crisis', is taking place in collaboration with Vrye Weekblad as part of the Vrystaat Literature Festival’s online initiative, VrySpraak-digitaal.

The panellists included top experts such as Prof Salim Abdool Karim, Director: Centre for the AIDS Programme of Research in South Africa (CAPRISA) and Chair: South African Ministerial Advisory Committee on COVID-19; Prof Glenda Gray, President and CEO: South African Medical Research Council (SAMRC); and the UFS’ Prof Felicity Burt, NRF-DST South African Research Chair in Vector-borne and Zoonotic Pathogens Research.
Prof Karim said the downward decline is consistent and the number of patients presenting at hospitals is also declining.
 
Promising trend of decline
“What we are seeing is a promising trend, and it looks like we are on the decline. A question that I am often asked is: Is the worst over? The answer is not clear-cut. We are concerned about the risk of a second surge. If anything – what really concerns me at this stage is a second surge, as I think about how the pandemic may play out over the next few weeks,” said Prof Karim. 

He also referred to countries such as the US, Spain, New Zealand, Vietnam, and South Korea, which are now facing a second surge. 

“We need to be very careful; this is not the time for complacency. We need to maintain all our efforts. If we look at one of the key drivers, it is the need for our economy to restart. We need to get people back to work,” said Prof Karim. 
According to him, we have to look at COVID-19 not as a sprint, but as a marathon. “As we learn to co-exist with this virus, aim for containment; we need to plan for the long term. Even if we get a vaccine, it is unlikely that we will be able to vaccinate a substantial part of our population before the end of next year.” 

“We need to transition from being scared to a situation where we can control our risk. When we know that we can control the risk and then influence the risk, we influence the risk of everyone around us. Part of the new normal is the strategy of mitigation with prevention, plus preventing outbreaks.”

Schools and vaccine development
Prof Gray spoke about whether schools should be open and the role that children play in transmission, how to avoid the second wave, how to adjust our testing, and the exciting news around vaccine development. 

As a paediatrician and a parent, Prof Gray said she believes schools should open. “Children have a different immune response to COVID-19. They have different immune responses to Coronavirus and they probably have less viral-load copies which makes them have milder diseases. They are lucky to have been spared from symptomatic or severe disease,” said Prof Gray. 

According to her, schools need to be de-risked as much as possible, with children and teachers wearing masks, washing hands, making sure that there is good ventilation in the school and that windows are wide open. 

“We also need to know about the comorbidity and ages of teachers, so that we can keep the sick and older teachers out of direct contact. The younger teachers with no comorbidities should be teaching. 

“We also know from our experiences with health workers that transmissions happen in the tearoom where teachers take off their masks and talk. We need to minimise the transmissions in tearooms and protect teachers and parents who are older and have comorbidities.”  

Prof Gray said from data she has seen, schools play a very small role in the transmission of COVID-19; a lot more (transmissions) happen in the community, by commuting, and overcrowded taxis.

Prof Gray agreed with Prof Karim that we should be concerned about a second wave, and that we need to make sure community transmissions are minimised. 

Regarding a vaccine, Prof Gray said a global race is on to find a vaccine. “The more vaccines the better, we want more vaccines to work. The more vaccines, the more affordable they are, and the more doses are available.”

One health approach

During her presentation, Prof Burt said the current response to outbreaks is largely reactive rather than proactive, and “if we have more of a one-health approach, with forecasting, early detection, and a more rapid response, we could have an impact on public health in the future”. 


News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept