Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2020 | Story Xolisa Mnukwa
SRC election term extended

SRC elections 2020/21 were due to take place before the end of August 2020 as prescribed by the ISRC constitution. However, owing to the COVID-19 pandemic, and the consequent lockdown regulations and extension of the UFS 2020 academic year, the current SRC term will be extended until March 2021.

The decision to extend the term of the SRC was taken by the Rectorate following a recommendation made by the Division of Student Affairs (DSA), after consultation with
the ISRC. 

The consultation process with the ISRC produced three options:
  • Proceed with SRC elections in August 2020;
  • Extend the current SRC term to align with the extended 2020 academic year; or
  • Elect a Transitional Student Council (TSC) from September 2020 to March 2021.
In view of the above, and considering current conditions amid the coronavirus pandemic,
online SRC elections are scheduled for March 2021. 

This extension implies that the terms of all the sub-structures of the ISRC will be extended accordingly.

This communication serves as official notice to the Student Body about the extension of the
2019/2020 ISRC term and all its sub-structures as per the prescripts of the ISRC Constitution.

The DSA, with particular reference to the Student Governance Office (SGO), remains
committed to engaging with all parties of legitimate interest about matters arising from,
related to, and/or about SRC elections in all its permutations. 

Should you have any questions or comments, please feel free to contact the SGO:
Coordinator: Kamogelo Dithebe (DithebeKS@ufs.ac.za)
Faculty Coordinator: (MunzheleleD@ufs.ac.za)
Administrator: Rethabile Motseki (MotsekiR@ufs.ac.za)

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept