Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2020 | Story André Damons | Photo Supplied
Prof Ivan Turok
Prof Ivan Turok

The number of people infected by the coronavirus is linked to the density of urban living. South Africa’s townships and informal settlements are bearing the brunt of the disease, on top of all their existing problems of unemployment, poverty, hunger, and crime. This is a disturbing situation and demands greater attention across society.

This is according to Prof Ivan Turok from the Human Sciences Research Council (HSRC), the Department of Economics and Finance, and the Centre for Development Support at the University of the Free State (UFS), who has recently been awarded a Research Chair in City-Region Economies at the UFS by the South African Research Chairs Initiative (SARChI).

Prof Turok was part of a webinar discussion on ‘Urban Living Post-COVID-19’ with Dr Geci Karuri-Sebina – who manages the research programme at South African Cities Network and who has two decades’ experience working and publishing in the fields of urban development, innovation, and foresight – and Mr Thireshen Govender, architect and founder of UrbanWorks. They analysed how COVID-19 challenges urban living, social distancing, and the de-densification of cities as South Africa heads towards 70% of its population living in urban areas.

According to Prof Turok, urban density has been blamed for the spread of the virus. “The fear of people crowding together has caused negative reactions from government, from business, and from households. This is unlikely to be a short-lived, temporary phenomenon. It will be with us for some time to come.”

“The virus poses an ongoing risk to society, with the prospect of second and third waves taking hold. A lockdown could be re-imposed and further efforts could be made to enforce distancing and de-densification of cities, particularly our densest settlements,” said Prof Turok.

 

De-risking urban density

There was a simple but compelling idea at the heart of his presentation, which should also be “at the heart of a more effective and inclusive response to the pandemic”. At the moment, the government’s response to the crisis facing our poorest communities is uninspiring. “We need a more positive vision for the future than wearing masks and washing our hands.”

“We need to be bolder and more imaginative about de-risking urban density. In other words, making crowded neighbourhoods safer and more secure for people to live in. Density poses multiple risks to residents. How do we reduce these risks in ways that generate wider benefits, rather than business as usual – forcing people to change their behaviour and follow protocols?”

With reference to New York, which was severely affected by the virus, Prof Turok showed that it was not density per se that was the problem, but rather the type of density. The densest part of the city (Manhattan) was far less affected by the virus than poorer outlying communities. “This gives us a clue that more floor space in taller buildings helps to prevent crowding and makes density more liveable,” said Prof Turok.

The reality in South Africa is also different when you drill down and distinguish between different kinds of places. Big cities have been affected worse than towns and rural areas – in terms of the incidence of infections and the number of deaths. Within cities, there have been far more problems in the townships and informal settlements than in the suburbs. In Cape Town, for example, the southern and northern suburbs and the central city have been barely affected by the virus. However, infections have been very high on the Cape Flats, including Khayelitsha, Langa, Gugulethu, Philippi, and Mitchells Plain.

“Population densities in some of these areas are more than 100 times higher than in the affluent suburbs. The differences are very striking.”

“Incomes on the Cape Flats are also much lower than elsewhere in the city. So, there is a correspondence between density and the disease, unlike New York,” says Prof Turok.

All the discussions about the pandemic so far has focused on the negative aspects of urban density for the risk of transmission. This ignores all the benefits of dense urban living. Intense human interaction fosters learning and creativity, which raises productivity and innovation. Concentrated populations generate economies of scale in the provision of infrastructure and institutions such as universities. Cities give firms greater choice of workers and vice versa.

 

Pure population density and economic density

Prof Turok continued by saying that physical distancing can be socially and economically damaging. “Attempts to force people apart through de-densification undermine all kinds of personal networks, weaken the social fabric of communities, and erode the economic advantages of proximity that are so important for cities.”

“We need to understand that people crowding together in dense informal settlements is a symptom of something more fundamental, namely poverty. The pressure on land reflects the fact that low-income households can’t afford the space standards of middle- and upper-income groups. Forcing people apart (or to stay home) to reduce the risk of transmission just treats the symptoms of the problem. It cannot be a lasting solution. It doesn’t build resilience to confront the multiple challenges facing poor communities,” said Prof Turok.

A key part of a lasting solution can be summed up as building economic density. This involves increasing investment in two- or three-storey buildings to give people more living space and to free up land at ground-floor level to accommodate essential infrastructure and more public space for markets and social interaction. A better living and working environment would strengthen community resilience to public-health problems and promote all-round development. The idea of economic density offers a practical vision that can inspire hope in a better future, rather than the status quo of wearing masks in crowded places.

“We need to de-risk urban density through tangible investment, rather than forced distancing or dispersal. This will help to bring about far-reaching improvements to people’s lives in cities. At the moment, the lack of economic density in impoverished communities is a much bigger problem than excessive population densities.”

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept