Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2020 | Story André Damons | Photo Supplied
Prof Ivan Turok
Prof Ivan Turok

The number of people infected by the coronavirus is linked to the density of urban living. South Africa’s townships and informal settlements are bearing the brunt of the disease, on top of all their existing problems of unemployment, poverty, hunger, and crime. This is a disturbing situation and demands greater attention across society.

This is according to Prof Ivan Turok from the Human Sciences Research Council (HSRC), the Department of Economics and Finance, and the Centre for Development Support at the University of the Free State (UFS), who has recently been awarded a Research Chair in City-Region Economies at the UFS by the South African Research Chairs Initiative (SARChI).

Prof Turok was part of a webinar discussion on ‘Urban Living Post-COVID-19’ with Dr Geci Karuri-Sebina – who manages the research programme at South African Cities Network and who has two decades’ experience working and publishing in the fields of urban development, innovation, and foresight – and Mr Thireshen Govender, architect and founder of UrbanWorks. They analysed how COVID-19 challenges urban living, social distancing, and the de-densification of cities as South Africa heads towards 70% of its population living in urban areas.

According to Prof Turok, urban density has been blamed for the spread of the virus. “The fear of people crowding together has caused negative reactions from government, from business, and from households. This is unlikely to be a short-lived, temporary phenomenon. It will be with us for some time to come.”

“The virus poses an ongoing risk to society, with the prospect of second and third waves taking hold. A lockdown could be re-imposed and further efforts could be made to enforce distancing and de-densification of cities, particularly our densest settlements,” said Prof Turok.

 

De-risking urban density

There was a simple but compelling idea at the heart of his presentation, which should also be “at the heart of a more effective and inclusive response to the pandemic”. At the moment, the government’s response to the crisis facing our poorest communities is uninspiring. “We need a more positive vision for the future than wearing masks and washing our hands.”

“We need to be bolder and more imaginative about de-risking urban density. In other words, making crowded neighbourhoods safer and more secure for people to live in. Density poses multiple risks to residents. How do we reduce these risks in ways that generate wider benefits, rather than business as usual – forcing people to change their behaviour and follow protocols?”

With reference to New York, which was severely affected by the virus, Prof Turok showed that it was not density per se that was the problem, but rather the type of density. The densest part of the city (Manhattan) was far less affected by the virus than poorer outlying communities. “This gives us a clue that more floor space in taller buildings helps to prevent crowding and makes density more liveable,” said Prof Turok.

The reality in South Africa is also different when you drill down and distinguish between different kinds of places. Big cities have been affected worse than towns and rural areas – in terms of the incidence of infections and the number of deaths. Within cities, there have been far more problems in the townships and informal settlements than in the suburbs. In Cape Town, for example, the southern and northern suburbs and the central city have been barely affected by the virus. However, infections have been very high on the Cape Flats, including Khayelitsha, Langa, Gugulethu, Philippi, and Mitchells Plain.

“Population densities in some of these areas are more than 100 times higher than in the affluent suburbs. The differences are very striking.”

“Incomes on the Cape Flats are also much lower than elsewhere in the city. So, there is a correspondence between density and the disease, unlike New York,” says Prof Turok.

All the discussions about the pandemic so far has focused on the negative aspects of urban density for the risk of transmission. This ignores all the benefits of dense urban living. Intense human interaction fosters learning and creativity, which raises productivity and innovation. Concentrated populations generate economies of scale in the provision of infrastructure and institutions such as universities. Cities give firms greater choice of workers and vice versa.

 

Pure population density and economic density

Prof Turok continued by saying that physical distancing can be socially and economically damaging. “Attempts to force people apart through de-densification undermine all kinds of personal networks, weaken the social fabric of communities, and erode the economic advantages of proximity that are so important for cities.”

“We need to understand that people crowding together in dense informal settlements is a symptom of something more fundamental, namely poverty. The pressure on land reflects the fact that low-income households can’t afford the space standards of middle- and upper-income groups. Forcing people apart (or to stay home) to reduce the risk of transmission just treats the symptoms of the problem. It cannot be a lasting solution. It doesn’t build resilience to confront the multiple challenges facing poor communities,” said Prof Turok.

A key part of a lasting solution can be summed up as building economic density. This involves increasing investment in two- or three-storey buildings to give people more living space and to free up land at ground-floor level to accommodate essential infrastructure and more public space for markets and social interaction. A better living and working environment would strengthen community resilience to public-health problems and promote all-round development. The idea of economic density offers a practical vision that can inspire hope in a better future, rather than the status quo of wearing masks in crowded places.

“We need to de-risk urban density through tangible investment, rather than forced distancing or dispersal. This will help to bring about far-reaching improvements to people’s lives in cities. At the moment, the lack of economic density in impoverished communities is a much bigger problem than excessive population densities.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept