Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 August 2020 | Story Andre Damons | Photo Barend Nagel
Prof Motlalepula Matsabisa, Associate Professor in the Department of Pharmacology at the University of the Free State (UFS), has been appointed as the chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines for COVID-19.

Prof Motlalepula Matsabisa, Associate Professor in the Department of Pharmacology at the University of the Free State (UFS), will lead Africa’s fight against the COVID-19 pandemic with his appointment as chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines for COVID-19.

Prof Matsabisa has been chosen over 25 other experts from 27 African countries to head this expert committee tasked with setting up research and clinical trials for COVID-19 and beyond. The committee is also supported by the African Union (AU), the Centers for Disease Control and Prevention (CDC – Africa), and the European and Developing Countries Clinical Trials Partnership (EDCTP).

This committee was established by the WHO and the Africa CDC on 22 July with the aim of providing independent scientific advice and support to countries on the safety, efficacy, and quality of traditional medicine therapies. It is also an effort to enhance research and development of traditional medicines for COVID-19 in Africa.

Looking forward

“This is a huge continental and global responsibility being laid on my shoulders as a chairperson.  I have to keep the committee together and ensure that it delivers on its set mandate and terms of reference.  I need to ensure that the committee helps the continent and region to get the scientific and legislative aspects on traditional medicine development on track.”  

“I have taken this position and responsibility, knowing quite well what it entails. I want to do this for the continent and for the sake of good science of all traditional healers and consumers of traditional medicines on the continent and beyond,” says Prof Matsabisa.

According to Prof Matsabisa, he is looking forward to working with a team of dedicated experts from 27 countries in the African region, and being of help to countries that need assistance with clinical trials, including preclinical work to move to clinical research.

Prof Matsabisa says he is also looking forward to countries asking South Africa to be part of their multi-centre studies in clinical trials for traditional medicines, and to help set up clinical trial teams that include Western-trained clinicians to get into traditional medicine studies. 

The work of the committee

According to Prof Matsabisa, his new position took effect the same day as his appointment and will run as long as COVID-19 is part of our daily lives and even beyond. It entails supporting member states to implement the WHO master plan for clinical trial protocols in order to generate credible data for COVID-19 results, based on traditional medicines. The committee will also coordinate support to member states in the African region to collaborate on clinical trials of traditional medicine-based therapies – elevating standards by pooling expertise in multicentre studies, as well as complying with GCP and good participatory practice guidelines for trials of emerging and re-emerging pathogens.
“The committee will also advise on strengthening the capacity of national medicine regulatory authorities to accelerate the issuance of marketing authorisations for traditional medicine products that have been well researched for safety, efficacy, and quality, as well as to expedite the approval of clinical trials on traditional medicines. This will help to meet the national registration criteria and the WHO norms and standards of quality, safety, and efficacy for the management of COVID-19 and others.”

“It will also provide independent scientific advice to the WHO and other partners regarding policies, strategies, and plans for integrating traditional medicines into COVID-19 responses and health systems,” explains Prof Matsabisa. 

Aiming for the top spot 

Prof Matsabisa has been described as having the third highest research output – something he is not satisfied with. 
“I was disappointed that only one point separated me from the second place. I will push for first place as this is my ultimate aim. My motivation for this is simple – I like what I am doing, I do not take it as a job but do it because I love research.”  

“I always like to tell students that we should be proud to one day see products in the shops that we can relate to and to which we have contributed or that we have made.   This is what drives me and my staff.  I have a beautiful team of students, staff, and postdoctoral fellows who share my vision of research.  We all have a shared vision and strive to be relevant at all times in science research, development, and teaching.”

• Prof Matsabisa was recently part of a national conference with the theme: Harnessing science, technology, and innovation in response to COVID-19: A national and international effort. The conference was hosted by Dr Blade Nzimande, Minister of Higher Education, Science and Innovation, with Pres Cyril Ramaphosa, Dr Zweli Mkhize, Minister of Health, Ebrahim Patel, Minister of Trade, Industry and Competition, Prof Sarah Anyang Agbor, African Union Commissioner for Human Resources, Science and Technology, and Dr Tedros Adhanom Ghebreyesus, Director-General of the World Health Organisation, in attendance. 

News Archive

Two scientists part of team that discovers the source of the highest energy cosmic rays at the centre of the Milky Way
2016-03-22

Description: Giant molecular clouds  Tags: Giant molecular clouds

Artist's impression of the giant molecular clouds surrounding the Galactic Centre, bombarded by very high energy protons accelerated in the vicinity of the central black hole and subsequently shining in gamma rays.
Artist's impression: © Dr Mark A. Garlick/ H.E.S.S. Collaboration

Spotlight photo:
Dr Brian van Soelen and Prof Pieter Meintjes of the UFS Department of Physics.
Photo: Charl Devenish

H.E.S.S. (High Energy Stereoscopic System) scientists publically revealed their latest galactic discovery in the international science journal, Nature, on 16 March 2016. These scientists were able to pinpoint the most powerful source of cosmic radiation – which, up to now, remained a mystery.

Part of this team of scientists are Prof Pieter Meintjes and Dr Brian van Soelen, both in the University of the Free State (UFS) Department of Physics. Dr Van Soelen explains that they have discovered a proton PeVatron – a source that can accelerate protons up to energies of ~1 PeV (10^15 eV) – at the centre of the Milky Way. The supermassive black hole called Sagittarius A has been identified as the most plausible source of this unprecedented acceleration of protons.

The protons are accelerated to Very High Energy (VHE) gamma rays. The energy of these protons are 100 times larger than those achieved by the Large Hadron Collider at CERN (the European Organization for Nuclear Research).

According to Dr Van Soelen, the fact that this research has been published in Nature demonstrates the importance and pioneering nature of the research conducted by H.E.S.S. The H.E.S.S. observatory – operational in Namibia – is a collaboration between 42 scientific institutions in 12 countries.

In 2006, H.E.S.S. was awarded the Descartes Prize of the European Commission – the highest recognition for collaborative research – and in 2010 the prestigious Rossi Prize of the American Astronomical Society. The extent of the observatory’s significance places it among the ranks of the Hubble Space Telescope and the telescopes of the European Southern Observatory in Chile.

“The next generation VHE gamma-ray telescope,” Dr Van Soelen says, “will be the Cherenkov Telescope Array (CTA), which is currently in the design and development stage.” Both Dr Van Soelen and Prof Meintjes are part of this project as well.

H.E.S.S. has issued a complete statement about the paper published in Nature.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept