Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2020 | Story Dr Nitha Ramnath

Apart from its devastating impact on people’s lives and livelihoods, the COVID-19 pandemic has also affected the nature and quality of our democracies – democracy read in its widest sense here as collective and individual self-determination. Formal, institutional democracy has beencurtailed through the imposition of states of emergency or disaster and the logistical difficulties associated with social distancing. Extra-institutional democratic work, such as protest and social-movement activity, has suffered from prohibitions imposed by law and through state suppression related to ‘lockdown’. The nature (and perhaps democratic quality) of public conversation has changed – for better or worse – from increasing reliance on ‘science’ and ‘scientists’ to justify public choices. The crisis has brought to the fore already existing characteristics of our democracies, such as the prevalence and power of special-interest bargaining, the extreme inequality of our societies, and chauvinist nationalisms that force us to ask whether we have ever had democracy at all. What will be the long-term effects of these impacts of the crisis on our democracies? What will democracy look like post-COVID? What does the crisis teach us about what our democracies have always been?

Join us for a discussion of these and other democracy-related issues in these troubled times by a panel of four hailing from Colombia, India, South Africa, and the USA.

Date: Thursday, 13 August
Time: 14:00-16:00 (South African Standard Time – GMT +2)

 

Please RSVP to Mamello Serasengwe at serasengwemsm@ufs.ac.za no later than 12 August 2020 upon which you will receive a Skype for Business meeting invite and link to access the webinar

Panel

Prof Natalia Angel Cabo (University of Los Andes, Bogota, Colombia)

Dr Quaraysha Ismail-Sooliman (University of Pretoria, Pretoria, South Africa)

Dr Usha Ramanathan  Independent Law Researcher  (Delhi, India)

Prof Katie Young (Boston College, Boston, USA) 

Moderator

Prof Danie Brand (Free State Centre for Human Rights, University of the Free State, Bloemfontein, South Africa)   




News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept