Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2020 | Story Dr Nitha Ramnath

Apart from its devastating impact on people’s lives and livelihoods, the COVID-19 pandemic has also affected the nature and quality of our democracies – democracy read in its widest sense here as collective and individual self-determination. Formal, institutional democracy has beencurtailed through the imposition of states of emergency or disaster and the logistical difficulties associated with social distancing. Extra-institutional democratic work, such as protest and social-movement activity, has suffered from prohibitions imposed by law and through state suppression related to ‘lockdown’. The nature (and perhaps democratic quality) of public conversation has changed – for better or worse – from increasing reliance on ‘science’ and ‘scientists’ to justify public choices. The crisis has brought to the fore already existing characteristics of our democracies, such as the prevalence and power of special-interest bargaining, the extreme inequality of our societies, and chauvinist nationalisms that force us to ask whether we have ever had democracy at all. What will be the long-term effects of these impacts of the crisis on our democracies? What will democracy look like post-COVID? What does the crisis teach us about what our democracies have always been?

Join us for a discussion of these and other democracy-related issues in these troubled times by a panel of four hailing from Colombia, India, South Africa, and the USA.

Date: Thursday, 13 August
Time: 14:00-16:00 (South African Standard Time – GMT +2)

 

Please RSVP to Mamello Serasengwe at serasengwemsm@ufs.ac.za no later than 12 August 2020 upon which you will receive a Skype for Business meeting invite and link to access the webinar

Panel

Prof Natalia Angel Cabo (University of Los Andes, Bogota, Colombia)

Dr Quaraysha Ismail-Sooliman (University of Pretoria, Pretoria, South Africa)

Dr Usha Ramanathan  Independent Law Researcher  (Delhi, India)

Prof Katie Young (Boston College, Boston, USA) 

Moderator

Prof Danie Brand (Free State Centre for Human Rights, University of the Free State, Bloemfontein, South Africa)   




News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept