Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2020 | Story Dr Nitha Ramnath

Apart from its devastating impact on people’s lives and livelihoods, the COVID-19 pandemic has also affected the nature and quality of our democracies – democracy read in its widest sense here as collective and individual self-determination. Formal, institutional democracy has beencurtailed through the imposition of states of emergency or disaster and the logistical difficulties associated with social distancing. Extra-institutional democratic work, such as protest and social-movement activity, has suffered from prohibitions imposed by law and through state suppression related to ‘lockdown’. The nature (and perhaps democratic quality) of public conversation has changed – for better or worse – from increasing reliance on ‘science’ and ‘scientists’ to justify public choices. The crisis has brought to the fore already existing characteristics of our democracies, such as the prevalence and power of special-interest bargaining, the extreme inequality of our societies, and chauvinist nationalisms that force us to ask whether we have ever had democracy at all. What will be the long-term effects of these impacts of the crisis on our democracies? What will democracy look like post-COVID? What does the crisis teach us about what our democracies have always been?

Join us for a discussion of these and other democracy-related issues in these troubled times by a panel of four hailing from Colombia, India, South Africa, and the USA.

Date: Thursday, 13 August
Time: 14:00-16:00 (South African Standard Time – GMT +2)

 

Please RSVP to Mamello Serasengwe at serasengwemsm@ufs.ac.za no later than 12 August 2020 upon which you will receive a Skype for Business meeting invite and link to access the webinar

Panel

Prof Natalia Angel Cabo (University of Los Andes, Bogota, Colombia)

Dr Quaraysha Ismail-Sooliman (University of Pretoria, Pretoria, South Africa)

Dr Usha Ramanathan  Independent Law Researcher  (Delhi, India)

Prof Katie Young (Boston College, Boston, USA) 

Moderator

Prof Danie Brand (Free State Centre for Human Rights, University of the Free State, Bloemfontein, South Africa)   




News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept