Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2020 | Story Andre Damons | Photo Pierce van Heerden
Prof Felicity Burt is a passionate virologist with more than 25 years of research on medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals.

Prof Felicity Burt, an expert in arbovirology in the Division of Virology, has been leading the University of the Free State (UFS) COVID-19 Task Team over the past five months. Prof Burt is a passionate virologist with more than 25 years of research on medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals.

As the UFS is celebrating its champion women this Women’s Month, Prof Burt gives us some insight into who she is. 

Please tell us about yourself

I am an arbovirologist from the Division of Virology in the Faculty of Health Sciences, and the National Health Laboratory Service. Who am I? I am a mum, a wife, a daughter, a sister, a sister-in-law, a friend, a scientist, a colleague, a professor.  I am passionate about my work and have spent more than 25 years researching medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals. 
My research group investigates the various mechanisms that viruses use to cause disease, and I am particularly interested in how our bodies respond to infection that can help us develop vaccines or therapies. Raising awareness of these viruses, profiling disease associated with different viruses, and developing tools for surveillance programmes all contribute towards understanding pathogens and the public-health implications. I am so grateful for the opportunities my career has provided me, which includes travelling all over the world for conferences and meetings and participating in outbreak responses in Africa.   
   
Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

I am inspired by all women who set goals and work to achieve them. The goals may vary, but they are important and challenging to each individual.  Hence, I would like us to acknowledge and celebrate all women who achieve their goals through hard work, dedication, and of course, plenty of passion. 

What are some of the challenges you’ve faced in your life that have made you a better woman?

I have always been quite a shy person and still find it challenging to stand up in front of an audience. I was born in Zimbabwe and when I finished school, I moved to South Africa to study at the University of the Witwatersrand. Moving on my own to Johannesburg at the age of 18 was definitely a challenge for a quiet, reserved girl from Harare. Compared to home, Johannesburg was a mammoth city; however, I absolutely loved university life, met people who became lifelong friends, and pursued a career in science. I try to learn from my many mistakes and treat others how I would like to be treated, especially with kindness. 

What advice would you give to the 15-year-old you?

Dream on girl, and it doesn’t matter if they don’t all come true; life isn’t going to turn out as expected, but as long as you enjoy the journey. You don’t have to be the best, but you have to do your best – with passion of course. 

What would you say makes you a champion woman [of the UFS]?

To be honest, I wouldn’t call myself a champion, but I am quite proud of what I have established at the UFS. With hard work and passion, contributions from colleagues, support from management, and never forgetting a whole bunch of wonderfully enthusiastic students, we have built an active postgraduate research group, graduated multiple students, published scientific articles in international journals, presented our research at conferences, contributed to community engagement, had fun, and still have plenty more to achieve!  

 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept