Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2020 | Story Andre Damons | Photo Pierce van Heerden
Prof Felicity Burt is a passionate virologist with more than 25 years of research on medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals.

Prof Felicity Burt, an expert in arbovirology in the Division of Virology, has been leading the University of the Free State (UFS) COVID-19 Task Team over the past five months. Prof Burt is a passionate virologist with more than 25 years of research on medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals.

As the UFS is celebrating its champion women this Women’s Month, Prof Burt gives us some insight into who she is. 

Please tell us about yourself

I am an arbovirologist from the Division of Virology in the Faculty of Health Sciences, and the National Health Laboratory Service. Who am I? I am a mum, a wife, a daughter, a sister, a sister-in-law, a friend, a scientist, a colleague, a professor.  I am passionate about my work and have spent more than 25 years researching medically significant viruses that cycle in nature and are transmitted to humans via mosquitoes, ticks, or animals. 
My research group investigates the various mechanisms that viruses use to cause disease, and I am particularly interested in how our bodies respond to infection that can help us develop vaccines or therapies. Raising awareness of these viruses, profiling disease associated with different viruses, and developing tools for surveillance programmes all contribute towards understanding pathogens and the public-health implications. I am so grateful for the opportunities my career has provided me, which includes travelling all over the world for conferences and meetings and participating in outbreak responses in Africa.   
   
Is there a woman who inspires you and who you would like to celebrate this Women’s Month, and why?

I am inspired by all women who set goals and work to achieve them. The goals may vary, but they are important and challenging to each individual.  Hence, I would like us to acknowledge and celebrate all women who achieve their goals through hard work, dedication, and of course, plenty of passion. 

What are some of the challenges you’ve faced in your life that have made you a better woman?

I have always been quite a shy person and still find it challenging to stand up in front of an audience. I was born in Zimbabwe and when I finished school, I moved to South Africa to study at the University of the Witwatersrand. Moving on my own to Johannesburg at the age of 18 was definitely a challenge for a quiet, reserved girl from Harare. Compared to home, Johannesburg was a mammoth city; however, I absolutely loved university life, met people who became lifelong friends, and pursued a career in science. I try to learn from my many mistakes and treat others how I would like to be treated, especially with kindness. 

What advice would you give to the 15-year-old you?

Dream on girl, and it doesn’t matter if they don’t all come true; life isn’t going to turn out as expected, but as long as you enjoy the journey. You don’t have to be the best, but you have to do your best – with passion of course. 

What would you say makes you a champion woman [of the UFS]?

To be honest, I wouldn’t call myself a champion, but I am quite proud of what I have established at the UFS. With hard work and passion, contributions from colleagues, support from management, and never forgetting a whole bunch of wonderfully enthusiastic students, we have built an active postgraduate research group, graduated multiple students, published scientific articles in international journals, presented our research at conferences, contributed to community engagement, had fun, and still have plenty more to achieve!  

 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept