Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story Eugene Seegers | Photo Sonia Small
Prof Fanie Snyman, retired Dean of the Faculty of Theology and Religion, is the first South African to publish a volume in the respected Tyndale Old Testament Commentaries series, which deals with the Bible books of Nahum, Habakkuk, and Zephaniah.

Against the backdrop of the Faculty of Theology and Religion’s 40th anniversary, Prof Fanie Snyman, retired Dean and research associate, has recently published a commentary in the Tyndale Old Testament Commentaries series based in Cambridge, England, on the prophetic books Nahum, Habakkuk, and Zephaniah of the Old Testament. What makes his book special is that Prof Snyman is the first and for the foreseeable future the only South African Old Testament scholar to be commissioned to publish in this distinguished commentary series. This commentary series is widely read and consulted in the English-speaking scholarly communities of Africa, Australia, Great Britain, New Zealand, the USA, and many European countries.

In a virtual ‘sit-down’ with Prof Fanie, he explained how a research volume of this type is usually compiled: It starts with a verse-by-verse analysis of the Bible books, looking at the literary aspects of how the passage was written as well as considering its historical, social, and cultural background. This is done to obtain a better overall understanding of the text. Secondly, a volume of commentary is not merely regurgitating knowledge that has already been generated. Prof Fanie says that “it must deliver new, fresh perspectives on the current state of research on these books. What can I contribute to the understanding of these writings?” To accomplish this, he had to pore over stacks of research on these prophetic works to be as current as possible with modern research.

First contributor from Africa

Dr David Firth, the series editor, says: “Over the nearly sixty-year history of the Tyndale Old Testament Commentaries, we have not previously had any contributors from Africa. That has now been put right with the release of Prof SD Snyman’s new volume on Nahum, Habakkuk, and Zephaniah. Prof Snyman has brought together his expertise on the prophetic literature of the Old Testament and theological awareness to present a fresh work on these often-neglected books. Through his careful attention to how these books functioned in their ancient setting and mastery of the secondary literature, he is also able to point to the enduring importance of each of these books for contemporary readers. As such, he has admirably fulfilled the brief for the series and produced a volume that will serve a new generation who come to these books.”

Prof Fanie affirms that the burning issues raised in each of these books regarding situations in ancient Israel often mimic comparable issues in our modern society. For example, he underscores how Nahum brings the misuse of political power to the fore, a current and topical point of contention. Prof Snyman says: “My aim was to create a vertical theological perspective of that historical situation against the backdrop of contemporary issues. I believe that these texts have a relevance for us and upon us today.”

Other international works

This book is the third one published internationally by Prof Snyman. In 2012, he published a book on the prophetic literature of the Old Testament together with a Dutch colleague in the USA. In 2015, he published a commentary on the book of Malachi in Europe. This book was awarded the UFS Book Prize for Distinguished Scholarship in 2017. 

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept