Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story Eugene Seegers | Photo Sonia Small
Prof Fanie Snyman, retired Dean of the Faculty of Theology and Religion, is the first South African to publish a volume in the respected Tyndale Old Testament Commentaries series, which deals with the Bible books of Nahum, Habakkuk, and Zephaniah.

Against the backdrop of the Faculty of Theology and Religion’s 40th anniversary, Prof Fanie Snyman, retired Dean and research associate, has recently published a commentary in the Tyndale Old Testament Commentaries series based in Cambridge, England, on the prophetic books Nahum, Habakkuk, and Zephaniah of the Old Testament. What makes his book special is that Prof Snyman is the first and for the foreseeable future the only South African Old Testament scholar to be commissioned to publish in this distinguished commentary series. This commentary series is widely read and consulted in the English-speaking scholarly communities of Africa, Australia, Great Britain, New Zealand, the USA, and many European countries.

In a virtual ‘sit-down’ with Prof Fanie, he explained how a research volume of this type is usually compiled: It starts with a verse-by-verse analysis of the Bible books, looking at the literary aspects of how the passage was written as well as considering its historical, social, and cultural background. This is done to obtain a better overall understanding of the text. Secondly, a volume of commentary is not merely regurgitating knowledge that has already been generated. Prof Fanie says that “it must deliver new, fresh perspectives on the current state of research on these books. What can I contribute to the understanding of these writings?” To accomplish this, he had to pore over stacks of research on these prophetic works to be as current as possible with modern research.

First contributor from Africa

Dr David Firth, the series editor, says: “Over the nearly sixty-year history of the Tyndale Old Testament Commentaries, we have not previously had any contributors from Africa. That has now been put right with the release of Prof SD Snyman’s new volume on Nahum, Habakkuk, and Zephaniah. Prof Snyman has brought together his expertise on the prophetic literature of the Old Testament and theological awareness to present a fresh work on these often-neglected books. Through his careful attention to how these books functioned in their ancient setting and mastery of the secondary literature, he is also able to point to the enduring importance of each of these books for contemporary readers. As such, he has admirably fulfilled the brief for the series and produced a volume that will serve a new generation who come to these books.”

Prof Fanie affirms that the burning issues raised in each of these books regarding situations in ancient Israel often mimic comparable issues in our modern society. For example, he underscores how Nahum brings the misuse of political power to the fore, a current and topical point of contention. Prof Snyman says: “My aim was to create a vertical theological perspective of that historical situation against the backdrop of contemporary issues. I believe that these texts have a relevance for us and upon us today.”

Other international works

This book is the third one published internationally by Prof Snyman. In 2012, he published a book on the prophetic literature of the Old Testament together with a Dutch colleague in the USA. In 2015, he published a commentary on the book of Malachi in Europe. This book was awarded the UFS Book Prize for Distinguished Scholarship in 2017. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept