Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2020 | Story André Damons | Photo Supplied
Read More Bianca Vermeulen
Bianca Vermeulen started her journey to become a doctor this year after being accepted by the University of the Free State (UFS) to study medicine. She had previously applied 32 times in eight years to study medicine.

A first-year medical student from the University of Free State (UFS) is finally on her way to realise her childhood dream of becoming a doctor after having been rejected 32 times in eight years to study medicine.

Bianca Vermeulen, who started the MBChB programme in 2020, said she applied 32 times in eight years and got rejected every time. As a qualified Critical Care Clinical Technologist who worked for the Free State Department of Health, the daily interaction with her patients and colleagues inspired her to keep her dream alive.

“My childhood dream (of becoming a doctor) did not fade. Dreams do not have expiry dates. During my time in the clinical setting, I learnt some important life lessons. Experience is most definitely what I got when I did not get what I wanted,” said Vermeulen.

According to her, working in a clinical setting fueled her passion. Said Bianca: “I woke up to an alarm clock of opportunity. At the end of the day I can go home with a feeling of satisfaction. I could not have done it without the support of my colleagues and friends. Then it all becomes worth it.”

Finally, a yes to study medicine

Vermeulen said she was at work when she received an e-mail on 3 October 2019 from the UFS application office. She initially ignored the e-mail thinking they would resend one of their earlier rejection letters. After ‘accidentally’ opening the letter, she could not believe her eyes.

“For a moment I was in denial. I had to read the letter a few times to ensure my eyes were not bewitching me. I had to show a friend to ensure that I had read and understood the letter. Then the reality came as an overwhelming mixture of emotions.”

Studying medicine during a pandemic

Vermeulen , who has a passion for neonatal and paediatric intensive care and would like to specialise in paediatrics and child health care after her undergraduate studies, said she welcomes the change that COVID-19 brought to the academic table.

“Daily routine changed overnight for all people and all stared uncertainty in the face. Students had to adapt to a blended learning approach (which also had its own challenges), but as time progressed, we learnt the new ropes.

“I truly hope that we all take the COVID lessons to heart. In the medical sector, no one is a greater ‘hero’ than another. The sector needs various role players and I hope that people realise the importance of nurses, hospital cleaners, administrative staff and all allied health workers. Without these people, the medical sector cannot function. We all need one another.

“With that being said, I hope people realise that we need a functional system so that we can work with each other and not against a system,” said Vermeulen.

Working with various healthcare workers, she has seen the effects of burnout and experienced the best (and worst) of both worlds but is still happy with her choice to study medicine.

It only takes one successful application

“As [US educator] Randy Pausch said: ‘The brick walls are there for a reason. The brick walls are not there to keep us out. The brick walls are there to give us a chance to show how badly we want something.’ I take this to heart,” Vermeulen said.

“You might have received ample unsuccessful applications, but it will only take one successful application to commence with your dream. If it is truly something you want to do, never give up on your dreams. Always work hard and take to heart what the Lord has done for you!”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept