Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2020 | Story André Damons | Photo Supplied
Read More Bianca Vermeulen
Bianca Vermeulen started her journey to become a doctor this year after being accepted by the University of the Free State (UFS) to study medicine. She had previously applied 32 times in eight years to study medicine.

A first-year medical student from the University of Free State (UFS) is finally on her way to realise her childhood dream of becoming a doctor after having been rejected 32 times in eight years to study medicine.

Bianca Vermeulen, who started the MBChB programme in 2020, said she applied 32 times in eight years and got rejected every time. As a qualified Critical Care Clinical Technologist who worked for the Free State Department of Health, the daily interaction with her patients and colleagues inspired her to keep her dream alive.

“My childhood dream (of becoming a doctor) did not fade. Dreams do not have expiry dates. During my time in the clinical setting, I learnt some important life lessons. Experience is most definitely what I got when I did not get what I wanted,” said Vermeulen.

According to her, working in a clinical setting fueled her passion. Said Bianca: “I woke up to an alarm clock of opportunity. At the end of the day I can go home with a feeling of satisfaction. I could not have done it without the support of my colleagues and friends. Then it all becomes worth it.”

Finally, a yes to study medicine

Vermeulen said she was at work when she received an e-mail on 3 October 2019 from the UFS application office. She initially ignored the e-mail thinking they would resend one of their earlier rejection letters. After ‘accidentally’ opening the letter, she could not believe her eyes.

“For a moment I was in denial. I had to read the letter a few times to ensure my eyes were not bewitching me. I had to show a friend to ensure that I had read and understood the letter. Then the reality came as an overwhelming mixture of emotions.”

Studying medicine during a pandemic

Vermeulen , who has a passion for neonatal and paediatric intensive care and would like to specialise in paediatrics and child health care after her undergraduate studies, said she welcomes the change that COVID-19 brought to the academic table.

“Daily routine changed overnight for all people and all stared uncertainty in the face. Students had to adapt to a blended learning approach (which also had its own challenges), but as time progressed, we learnt the new ropes.

“I truly hope that we all take the COVID lessons to heart. In the medical sector, no one is a greater ‘hero’ than another. The sector needs various role players and I hope that people realise the importance of nurses, hospital cleaners, administrative staff and all allied health workers. Without these people, the medical sector cannot function. We all need one another.

“With that being said, I hope people realise that we need a functional system so that we can work with each other and not against a system,” said Vermeulen.

Working with various healthcare workers, she has seen the effects of burnout and experienced the best (and worst) of both worlds but is still happy with her choice to study medicine.

It only takes one successful application

“As [US educator] Randy Pausch said: ‘The brick walls are there for a reason. The brick walls are not there to keep us out. The brick walls are there to give us a chance to show how badly we want something.’ I take this to heart,” Vermeulen said.

“You might have received ample unsuccessful applications, but it will only take one successful application to commence with your dream. If it is truly something you want to do, never give up on your dreams. Always work hard and take to heart what the Lord has done for you!”

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept