Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 December 2020 | Story André Damons | Photo Supplied
Dr Michael Pienaar is a lecturer in the University of the Free State’s (UFS) department of Paediatrics and Child Health.

A lecturer from the University of the Free State’s (UFS) department of Paediatrics and Child Health is investigating the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness.

Dr Michael Pienaar, senior lecturer and specialist, is conducting this research as part of his doctoral research and the study deals primarily with the development of models that are designed and calibrated for use in South Africa. These artificial neural networks are computer programs designed to mimic some of the learning characteristics of biological neurons.

The potential applications of models

According to Dr Pienaar these models have traditionally been developed in high-income nations using conventional statistical methods.

“The potential applications of such models in the clinical setting include triage, medical research, guidance of resource allocation and quality control. Having initially begun this research investigating the prediction of mortality outcomes in the paediatric intensive care unit (PICU) I have broadened my scope to patients outside of PICU, seeking to identify children early during their illnesses who are at risk of serious illness requiring PICU,” says Dr Pienaar.

The research up until now has been directed towards the identification of characteristics that are both unique to children with serious illness in South Africa, but also accessible to clinicians in settings where expertise and technical resources are limited.

Research still in the early changes

The research is still in its early stages but next year a series of expert review panels will be held to investigate the selection of variables for the model, after which the collection of clinical data will begin. Once the data has been collected and prepared, a number of candidate models will be developed and evaluated. This should be concluded by the end of 2022.

Says Dr Pienaar: “The need to engage with the rapid proliferation of technology, particularly in the realms of machine learning, mobile technology, automation and the Internet of Things is as great in medical research now as it is in any academic discipline.

“It is critical that research, particularly in South Africa, engage with this in order to take advantage of the opportunities offered and avoid the dangers that go paired with them. Together with the technology as such, it has been essential to pursue this project as an interdisciplinary undertaking involving clinicians, biostatisticians and computer engineers.”

Hope for the research  

Dr Pienaar says he was very fortunate and grateful to be the recipient of a generous interdisciplinary grant from the UFS which has allowed him to procure software and equipment that is critical to this project.

“The hope for this research is that the best performing of these models can be integrated with a mobile application that assists practitioners in a wide range of settings in the identification, treatment and early referral of children at high risk of severe illness. I would like to expand this research project to include other countries in Africa and South America and to use it as a bridge to collaboration with other clinical researchers in the Global South,” says Dr Pienaar.

As an early career researcher, Dr Pienaar hopes that this research can serve as a platform to build a body of research that uses the rapid technological advances of these times together with a wide range of collaborations with other disciplines in the pursuit of better child health.

He concludes by saying that he has had excellent support thus far from his supervisors, Prof Stephen Brown (Faculty of Health Sciences, UFS), Dr Nicolaas Luwes (Faculty of Computer Science and Engineering, Central University of Technology) and Dr Elizabeth George (Medical Research Council Clinical Trials Unit, University College London). I have also been supported by the Robert Frater Institute in the Faculty of Health Sciences.

News Archive

Her mission: Looking for viruses
2017-10-03

Description: Burt readmore Tags: Prof Felicity Burt, Felicity Burt, inaugural lecture, medical virology, UFS Faculty of Health Sciences, arboviruses 

Prof Felicity Burt delivering her inaugural lecture,
Catching a Virus
Photo: Stephen Collett

“Preparing and presenting an inaugural lecture is an opportunity to look back at one’s career and to enjoy previous highlights and achievements; to share these, not only with colleagues, but also with family and friends.”

This is according to Prof Felicity Burt, who recently presented her inaugural lecture, Catching a Virus. Prof Burt is a professor in medical virology in the Faculty of Health Sciences at the University of the Free State (UFS). It may sound ominous, but it is a story about identifying viruses, and finding and stopping them in their tracks in nature.

Research focus on arbo- and zoonotic viruses 
“My research focuses on arboviruses and zoonotic viruses,” said Prof Burt. “Arboviruses are viruses that are transmitted by insect vectors, such as mosquitoes, ticks, midges or sandflies, whereas zoonotic viruses are naturally transmitted from animals to humans. However, there is a considerable overlap between these two groups.” The research looks at host responses, virus discovery and surveillance in order to identify which of the viruses in circulation have the potential to cause human diseases.

“Emerging and re-emerging viruses have significant implications for public health,” said Prof Burt at the start of her lecture. She also stated that there have been disease outbreaks of unprecedented magnitude, which have spread and established in distinct geographic regions. “Many of these emerging viruses are transmitted by vectors or are spread to humans from animals. These viruses can cause significant diseases in humans,” said Prof Burt. 

There are many reasons why these viruses re-emerge, such as global warming, human invasion in forested areas, changes in agricultural practices, international travel, as well as the illegal movement of animals. Prof Burt used the Zika virus as an example of a recent emerging virus. 

More than 20 years’ experience 

With more than 20 years’ experience and a PhD in medical virology from the University of the Witwatersrand, Prof Burt is a renowned specialist. She has worked in the Special Pathogens Unit at the National Institute for Communicable Diseases, and was a member of various teams responding to outbreaks of Ebola and Rift Valley fever in Africa and Saudi Arabia, respectively. She is co-author of more than 51 articles in international scientific journals, as well as six chapters on arboviruses. In 2016, she was awarded a SARChl research chair by the South African Research Chair Initiative for her research on vector-borne and zoonotic diseases.

Click here to read the full lecture.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept