Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 December 2020 | Story André Damons | Photo Supplied
Dr Michael Pienaar is a lecturer in the University of the Free State’s (UFS) department of Paediatrics and Child Health.

A lecturer from the University of the Free State’s (UFS) department of Paediatrics and Child Health is investigating the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness.

Dr Michael Pienaar, senior lecturer and specialist, is conducting this research as part of his doctoral research and the study deals primarily with the development of models that are designed and calibrated for use in South Africa. These artificial neural networks are computer programs designed to mimic some of the learning characteristics of biological neurons.

The potential applications of models

According to Dr Pienaar these models have traditionally been developed in high-income nations using conventional statistical methods.

“The potential applications of such models in the clinical setting include triage, medical research, guidance of resource allocation and quality control. Having initially begun this research investigating the prediction of mortality outcomes in the paediatric intensive care unit (PICU) I have broadened my scope to patients outside of PICU, seeking to identify children early during their illnesses who are at risk of serious illness requiring PICU,” says Dr Pienaar.

The research up until now has been directed towards the identification of characteristics that are both unique to children with serious illness in South Africa, but also accessible to clinicians in settings where expertise and technical resources are limited.

Research still in the early changes

The research is still in its early stages but next year a series of expert review panels will be held to investigate the selection of variables for the model, after which the collection of clinical data will begin. Once the data has been collected and prepared, a number of candidate models will be developed and evaluated. This should be concluded by the end of 2022.

Says Dr Pienaar: “The need to engage with the rapid proliferation of technology, particularly in the realms of machine learning, mobile technology, automation and the Internet of Things is as great in medical research now as it is in any academic discipline.

“It is critical that research, particularly in South Africa, engage with this in order to take advantage of the opportunities offered and avoid the dangers that go paired with them. Together with the technology as such, it has been essential to pursue this project as an interdisciplinary undertaking involving clinicians, biostatisticians and computer engineers.”

Hope for the research  

Dr Pienaar says he was very fortunate and grateful to be the recipient of a generous interdisciplinary grant from the UFS which has allowed him to procure software and equipment that is critical to this project.

“The hope for this research is that the best performing of these models can be integrated with a mobile application that assists practitioners in a wide range of settings in the identification, treatment and early referral of children at high risk of severe illness. I would like to expand this research project to include other countries in Africa and South America and to use it as a bridge to collaboration with other clinical researchers in the Global South,” says Dr Pienaar.

As an early career researcher, Dr Pienaar hopes that this research can serve as a platform to build a body of research that uses the rapid technological advances of these times together with a wide range of collaborations with other disciplines in the pursuit of better child health.

He concludes by saying that he has had excellent support thus far from his supervisors, Prof Stephen Brown (Faculty of Health Sciences, UFS), Dr Nicolaas Luwes (Faculty of Computer Science and Engineering, Central University of Technology) and Dr Elizabeth George (Medical Research Council Clinical Trials Unit, University College London). I have also been supported by the Robert Frater Institute in the Faculty of Health Sciences.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept