Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 December 2020 | Story André Damons | Photo Supplied
Dr Michael Pienaar is a lecturer in the University of the Free State’s (UFS) department of Paediatrics and Child Health.

A lecturer from the University of the Free State’s (UFS) department of Paediatrics and Child Health is investigating the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness.

Dr Michael Pienaar, senior lecturer and specialist, is conducting this research as part of his doctoral research and the study deals primarily with the development of models that are designed and calibrated for use in South Africa. These artificial neural networks are computer programs designed to mimic some of the learning characteristics of biological neurons.

The potential applications of models

According to Dr Pienaar these models have traditionally been developed in high-income nations using conventional statistical methods.

“The potential applications of such models in the clinical setting include triage, medical research, guidance of resource allocation and quality control. Having initially begun this research investigating the prediction of mortality outcomes in the paediatric intensive care unit (PICU) I have broadened my scope to patients outside of PICU, seeking to identify children early during their illnesses who are at risk of serious illness requiring PICU,” says Dr Pienaar.

The research up until now has been directed towards the identification of characteristics that are both unique to children with serious illness in South Africa, but also accessible to clinicians in settings where expertise and technical resources are limited.

Research still in the early changes

The research is still in its early stages but next year a series of expert review panels will be held to investigate the selection of variables for the model, after which the collection of clinical data will begin. Once the data has been collected and prepared, a number of candidate models will be developed and evaluated. This should be concluded by the end of 2022.

Says Dr Pienaar: “The need to engage with the rapid proliferation of technology, particularly in the realms of machine learning, mobile technology, automation and the Internet of Things is as great in medical research now as it is in any academic discipline.

“It is critical that research, particularly in South Africa, engage with this in order to take advantage of the opportunities offered and avoid the dangers that go paired with them. Together with the technology as such, it has been essential to pursue this project as an interdisciplinary undertaking involving clinicians, biostatisticians and computer engineers.”

Hope for the research  

Dr Pienaar says he was very fortunate and grateful to be the recipient of a generous interdisciplinary grant from the UFS which has allowed him to procure software and equipment that is critical to this project.

“The hope for this research is that the best performing of these models can be integrated with a mobile application that assists practitioners in a wide range of settings in the identification, treatment and early referral of children at high risk of severe illness. I would like to expand this research project to include other countries in Africa and South America and to use it as a bridge to collaboration with other clinical researchers in the Global South,” says Dr Pienaar.

As an early career researcher, Dr Pienaar hopes that this research can serve as a platform to build a body of research that uses the rapid technological advances of these times together with a wide range of collaborations with other disciplines in the pursuit of better child health.

He concludes by saying that he has had excellent support thus far from his supervisors, Prof Stephen Brown (Faculty of Health Sciences, UFS), Dr Nicolaas Luwes (Faculty of Computer Science and Engineering, Central University of Technology) and Dr Elizabeth George (Medical Research Council Clinical Trials Unit, University College London). I have also been supported by the Robert Frater Institute in the Faculty of Health Sciences.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept