Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2020 | Story André Damons
Bongani Mayosi Prize Latest News
Drs Kaamilah Joosub (in front) and Lynette Upman, medical students in the Faculty of Health Sciences at the UFS, are the winners of the first Bongani Mayosi Medical Students Academic Prize for final-year medical students.

Two final-year medical students from the University of the Free State (UFS) became the first recipients of the prestigious Bongani Mayosi Medical Students Academic Prize which was bestowed on them 10 days before their graduation.

Drs Kaamilah Joosub and Lynette Upman, two final-year medical students in the Faculty of Health Sciences at the UFS are the first medical students from the university to be awarded the prize.This is the first year it has been awarded.

Drs Joosub and Upman received their awards at a function on Friday (4 December 2020) from Prof Hanneke Brits, Phase III chair and specialist in the Department of Family Medicine, on behalf of Prof Gert van Zyl, Dean of the Faculty of Health Sciences.

The Faculty of Health Sciences will host a virtual graduation on 14 December 2020.

Prestigious national award

The Bongani Mayosi Medical Students Academic Prize is a prestigious national award which aims to recognise final-year medical students who epitomise the academic, legendary, and altruistic life of Mayosi. The awards are presented to final-year MB ChB students from all South African medical faculties. Each student is allowed one vote for one classmate who, in their private opinion, best balances:

  • Academic achievement
  • Emotional intelligence ‑ good interpersonal skills
  • Social accountability ‑ the ability to respond helpfully to the needs of others

Winners are determined by the highest number of digital votes, with the first-prize winner receiving R6 000 and second prize coming in at R4 000.

Dr Lynette van der Merwe, undergraduate medical programme director in the School of Clinical Medicine at UFS, commented that Drs Joosub and Upman are worthy winners, as they have continuously exemplified the ideals recognised by this award during their undergraduate training.

The School of Clinical Medicine is very proud of its newest Kovsie doctors who successfully completed the academic year despite the immense challenges associated with the COVID-19 pandemic. This is thanks to the commitment and hard work of students and staff at the UFS. 

Name behind the prize

The late Prof Bongani Mayosi was an outstanding doctor who rose rapidly through the ranks to become a top cardiologist, internationally recognised as a leading clinician scientist. He completed his undergraduate studies at the age of 22, having graduated cum laude in both the Bachelor of Medicine and Surgery (MB ChB) and Bachelor of Medical Sciences (BMedSci) degrees.

He trained as a physician and cardiologist at Groote Schuur Hospital and completed his doctorate at the University of Oxford in the UK. At the age of 38‚ he became the first black to be appointed professor and Head of the Department of Medicine at the University of Cape Town (UCT). In 2016, he was appointed Dean of the Faculty of Health Sciences at UCT. Before taking up his deanship, he completed the Advanced Management Programme at Harvard University in the US.

As a medical student Prof Mayosi excelled academically, was supportive of his classmates and enthusiastically involved in student residence committees and politics as well as community outreach programmes. As a researcher, he initiated an international programme of research focusing on solutions for poverty-related heart diseases and trained local clinician scientists and research leaders.

Prof Mayosi had an exceptional mixture of academic brilliance and vision; ambition and humility; kindness and generosity; passion and compassion; drive and empathy that complemented his ability to persuade and inspire others, which no doubt contributed to his 400 publications.

 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept