Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2020 | Story André Damons
Bongani Mayosi Prize Latest News
Drs Kaamilah Joosub (in front) and Lynette Upman, medical students in the Faculty of Health Sciences at the UFS, are the winners of the first Bongani Mayosi Medical Students Academic Prize for final-year medical students.

Two final-year medical students from the University of the Free State (UFS) became the first recipients of the prestigious Bongani Mayosi Medical Students Academic Prize which was bestowed on them 10 days before their graduation.

Drs Kaamilah Joosub and Lynette Upman, two final-year medical students in the Faculty of Health Sciences at the UFS are the first medical students from the university to be awarded the prize.This is the first year it has been awarded.

Drs Joosub and Upman received their awards at a function on Friday (4 December 2020) from Prof Hanneke Brits, Phase III chair and specialist in the Department of Family Medicine, on behalf of Prof Gert van Zyl, Dean of the Faculty of Health Sciences.

The Faculty of Health Sciences will host a virtual graduation on 14 December 2020.

Prestigious national award

The Bongani Mayosi Medical Students Academic Prize is a prestigious national award which aims to recognise final-year medical students who epitomise the academic, legendary, and altruistic life of Mayosi. The awards are presented to final-year MB ChB students from all South African medical faculties. Each student is allowed one vote for one classmate who, in their private opinion, best balances:

  • Academic achievement
  • Emotional intelligence ‑ good interpersonal skills
  • Social accountability ‑ the ability to respond helpfully to the needs of others

Winners are determined by the highest number of digital votes, with the first-prize winner receiving R6 000 and second prize coming in at R4 000.

Dr Lynette van der Merwe, undergraduate medical programme director in the School of Clinical Medicine at UFS, commented that Drs Joosub and Upman are worthy winners, as they have continuously exemplified the ideals recognised by this award during their undergraduate training.

The School of Clinical Medicine is very proud of its newest Kovsie doctors who successfully completed the academic year despite the immense challenges associated with the COVID-19 pandemic. This is thanks to the commitment and hard work of students and staff at the UFS. 

Name behind the prize

The late Prof Bongani Mayosi was an outstanding doctor who rose rapidly through the ranks to become a top cardiologist, internationally recognised as a leading clinician scientist. He completed his undergraduate studies at the age of 22, having graduated cum laude in both the Bachelor of Medicine and Surgery (MB ChB) and Bachelor of Medical Sciences (BMedSci) degrees.

He trained as a physician and cardiologist at Groote Schuur Hospital and completed his doctorate at the University of Oxford in the UK. At the age of 38‚ he became the first black to be appointed professor and Head of the Department of Medicine at the University of Cape Town (UCT). In 2016, he was appointed Dean of the Faculty of Health Sciences at UCT. Before taking up his deanship, he completed the Advanced Management Programme at Harvard University in the US.

As a medical student Prof Mayosi excelled academically, was supportive of his classmates and enthusiastically involved in student residence committees and politics as well as community outreach programmes. As a researcher, he initiated an international programme of research focusing on solutions for poverty-related heart diseases and trained local clinician scientists and research leaders.

Prof Mayosi had an exceptional mixture of academic brilliance and vision; ambition and humility; kindness and generosity; passion and compassion; drive and empathy that complemented his ability to persuade and inspire others, which no doubt contributed to his 400 publications.

 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept