Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 December 2020
Health sciences
The more than 100 medical students who graduated virtually from the University of the Free State (UFS) Faculty of Health Sciences on Monday (14 December), graduated with a pass rate of 98% in a tumultuous year dominated by the COVID-19 pandemic. The MB ChB class of 2020 – a total of 104 students from the School of Clinical Medicine – graduated virtually on Monday due to COVID-19.

The more than 100 medical students who graduated virtually from the University of the Free State (UFS) Faculty of Health Sciences on Monday (14 December), graduated with a pass rate of 98% in a tumultuous year dominated by the COVID-19 pandemic.

The MB ChB class of 2020 – a total of 104 students from the School of Clinical Medicine – graduated virtually on 14 December due to COVID-19. Another virtual graduation is scheduled for 4 January 2021.

An uncomfortable reality
Dr Lynette van der Merwe, undergraduate medical programme director in the School of Clinical Medicine at the UFS, congratulated the latest UFS doctors on their success. Said Dr Van der Merwe: “In a tumultuous year dominated by the COVID-19 pandemic, this group of final-year medical students refused to give in to the pressure and disruption of national lockdown, emergency remote teaching, an adjusted academic calendar, and frontline exposure as healthcare professionals in training.”  

“They persevered against all odds, faced up to an uncomfortable reality, and showed remarkable resilience.”

According to Dr Van der Merwe, the class of 2020 completed the gruelling five-year medical programme with a pass rate of 98,3%, impressing external examiners who commented on their respectful attitude towards patients and thorough knowledge and skill.  

“The School of Clinical Medicine and Faculty of Health Sciences are immensely proud of our new colleagues and look forward to their contribution to the future of healthcare in South Africa. This achievement would not have been possible without the unwavering commitment of the academic and support staff who guided our students and led the way for them to achieve a life-long dream.”  

“We look back with gratitude on a year that required more than the usual amount of adaptability, creativity, innovation, faith, patience, bravery, and endurance.  It is these qualities that set apart the doctors who graduate from the UFS, and those who train them,” says Dr Van der Merwe.

Hope for the future
She says while COVID-19 is still a harsh reality and the future holds much uncertainty, 2020 has shown that there is hope when we face challenges with grace under pressure, and a firm belief in our goals and values. “Class of 2020, may you continue to rise above fear, chaos and disappointment, may you take heart and walk your journey with strength, may you bring healing to our people and lead us well.”

Drs Kaamilah Joosub and Lynette Upman, who also graduated on Monday, were awarded the prestigious Bongani Mayosi Medical Students Academic Prize – a national award which aims to recognise final-year medical students who epitomise the academic, legendary, and altruistic life of the late Prof Mayosi. The awards are presented to final-year MB ChB students from all South African medical faculties. This is the first year it has been awarded.

View the virtual graduation

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept