Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 December 2020
Health sciences
The more than 100 medical students who graduated virtually from the University of the Free State (UFS) Faculty of Health Sciences on Monday (14 December), graduated with a pass rate of 98% in a tumultuous year dominated by the COVID-19 pandemic. The MB ChB class of 2020 – a total of 104 students from the School of Clinical Medicine – graduated virtually on Monday due to COVID-19.

The more than 100 medical students who graduated virtually from the University of the Free State (UFS) Faculty of Health Sciences on Monday (14 December), graduated with a pass rate of 98% in a tumultuous year dominated by the COVID-19 pandemic.

The MB ChB class of 2020 – a total of 104 students from the School of Clinical Medicine – graduated virtually on 14 December due to COVID-19. Another virtual graduation is scheduled for 4 January 2021.

An uncomfortable reality
Dr Lynette van der Merwe, undergraduate medical programme director in the School of Clinical Medicine at the UFS, congratulated the latest UFS doctors on their success. Said Dr Van der Merwe: “In a tumultuous year dominated by the COVID-19 pandemic, this group of final-year medical students refused to give in to the pressure and disruption of national lockdown, emergency remote teaching, an adjusted academic calendar, and frontline exposure as healthcare professionals in training.”  

“They persevered against all odds, faced up to an uncomfortable reality, and showed remarkable resilience.”

According to Dr Van der Merwe, the class of 2020 completed the gruelling five-year medical programme with a pass rate of 98,3%, impressing external examiners who commented on their respectful attitude towards patients and thorough knowledge and skill.  

“The School of Clinical Medicine and Faculty of Health Sciences are immensely proud of our new colleagues and look forward to their contribution to the future of healthcare in South Africa. This achievement would not have been possible without the unwavering commitment of the academic and support staff who guided our students and led the way for them to achieve a life-long dream.”  

“We look back with gratitude on a year that required more than the usual amount of adaptability, creativity, innovation, faith, patience, bravery, and endurance.  It is these qualities that set apart the doctors who graduate from the UFS, and those who train them,” says Dr Van der Merwe.

Hope for the future
She says while COVID-19 is still a harsh reality and the future holds much uncertainty, 2020 has shown that there is hope when we face challenges with grace under pressure, and a firm belief in our goals and values. “Class of 2020, may you continue to rise above fear, chaos and disappointment, may you take heart and walk your journey with strength, may you bring healing to our people and lead us well.”

Drs Kaamilah Joosub and Lynette Upman, who also graduated on Monday, were awarded the prestigious Bongani Mayosi Medical Students Academic Prize – a national award which aims to recognise final-year medical students who epitomise the academic, legendary, and altruistic life of the late Prof Mayosi. The awards are presented to final-year MB ChB students from all South African medical faculties. This is the first year it has been awarded.

View the virtual graduation

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept