Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2020 Photo Supplied
Read More NAS Danie Vermeulen
The Faculty of Natural and Agricultural Sciences held its very first virtual Academic Awards Ceremony this year, where 103 prizes were awarded in 75 different categories. Prof Danie Vermeulen sponsored the award for the best undergraduate student in the faculty.

The Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) presented its very first virtual Academic Awards Ceremony this year, celebrating the achievements of students.

According to Tracy Isaacs and Heidiry White, both from the Office of the Dean: Natural and Agricultural Sciences and organisers of the event, the aim of this event is to award and reward skills, knowledge, talent, and abilities. They believe the event contributes to encourage, inspire, and motivate other students to excel.

“Academic awards in the faculty create meaningful moments of recognition that inspire others and reinforce the behaviour that led to the reward. Rewarding students for their hard work forms an integral part of creating a competitive spirit among students. Competition is essential, as it encourages every student to do their best to stand out,” says Isaacs. 

Support and innovation

During this year’s ceremony, 103 prizes were awarded in 75 different categories. Dedicated academic staff who went the extra mile to ensure that no student was left behind, played a major role in the faculty awarding this number of prizes. 

The quality of the programmes and the curriculum, together with innovative teaching and learning activities and approaches, form the basis for academic excellence in the faculty. Lecturers and students are also provided with ongoing support and proper resources to maintain a high quality of teaching.

An achievement that stood out was the work of Philip Schall, who received the Dean’s Award for best undergraduate student in the faculty. Schall obtained his degree with distinction. The Dean, Prof Danie Vermeulen, sponsored this award.

Search for knowledge encouraged

Lecturers and researchers encourage students on a daily basis to pursue academic excellence by challenging them to obtain the highest level of success in their work. 

Students are also provided with an academic, creative, and enterprising spirit that not only prepares them for their academic journey, but also for the world of work. “While being exposed to a range of valuable and relevant learning experiences, students are prepared for further study, ongoing learning, and for their future work environment,” says Isaacs.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept