Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2020 Photo Supplied
Read More NAS Danie Vermeulen
The Faculty of Natural and Agricultural Sciences held its very first virtual Academic Awards Ceremony this year, where 103 prizes were awarded in 75 different categories. Prof Danie Vermeulen sponsored the award for the best undergraduate student in the faculty.

The Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) presented its very first virtual Academic Awards Ceremony this year, celebrating the achievements of students.

According to Tracy Isaacs and Heidiry White, both from the Office of the Dean: Natural and Agricultural Sciences and organisers of the event, the aim of this event is to award and reward skills, knowledge, talent, and abilities. They believe the event contributes to encourage, inspire, and motivate other students to excel.

“Academic awards in the faculty create meaningful moments of recognition that inspire others and reinforce the behaviour that led to the reward. Rewarding students for their hard work forms an integral part of creating a competitive spirit among students. Competition is essential, as it encourages every student to do their best to stand out,” says Isaacs. 

Support and innovation

During this year’s ceremony, 103 prizes were awarded in 75 different categories. Dedicated academic staff who went the extra mile to ensure that no student was left behind, played a major role in the faculty awarding this number of prizes. 

The quality of the programmes and the curriculum, together with innovative teaching and learning activities and approaches, form the basis for academic excellence in the faculty. Lecturers and students are also provided with ongoing support and proper resources to maintain a high quality of teaching.

An achievement that stood out was the work of Philip Schall, who received the Dean’s Award for best undergraduate student in the faculty. Schall obtained his degree with distinction. The Dean, Prof Danie Vermeulen, sponsored this award.

Search for knowledge encouraged

Lecturers and researchers encourage students on a daily basis to pursue academic excellence by challenging them to obtain the highest level of success in their work. 

Students are also provided with an academic, creative, and enterprising spirit that not only prepares them for their academic journey, but also for the world of work. “While being exposed to a range of valuable and relevant learning experiences, students are prepared for further study, ongoing learning, and for their future work environment,” says Isaacs.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept