Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2020
Prof Abdon Atangana
Prof Abdon Atangana is known for his work in developing a new fractional operator used to model real-world problems arising in the fields of science, technology, and engineering. He was recently awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences.

Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS), was awarded the TWAS Mohammad A. Hamdan Award by The World Academy of Sciences for the advancement of science in developing countries.

It is the first time that the TWAS Mohammad A. Hamdan Award was bestowed. According to a statement issued by TWAS, this award is given for outstanding mathematical work carried out by a scientist working and living in Africa or the Arab region. It states that the award can be given for work in pure mathematics, applied mathematics, probability, or statistics. Prof Atangana received the award for his contribution to fractal mathematics and partial differential equations.

Making a difference in society

He is known for his research in developing a new fractional operator, the Atangana-Baleanu operator, which is used to model real-world problems. With this operator, he not only describes the rate at which something will change, but also account for disrupting factors that will help to produce better projections.

His work can be applied to make complicated predictions in the fields of science, technology, and engineering. His models can, for instance, help to predict the spread of infectious diseases among people in a settlement, forecasting the number of people who will be infected each day, the number of people who will recover, and the number of people who will die.

Prof Atangana’s models can also help to advise people drilling for water by predicting how groundwater is flowing in a complex geological formation. These are only two examples of how his work can be applied to make a difference in society.

The award from TWAS is the third prestigious commendation he has received in the past month. He was recently named as one of the top 1% scientists on the global Clarivate Web of Science list. His name also appeared on a global list of leading scientists published by Stanford University in the United States. The list is the result of a study published in PLOS Biology, a peer-reviewed open-access journal.

World’s most accomplished scientists

Honours awarded by TWAS and its partners are among the most prestigious for research in the developing world. They recognise outstanding achievements and contributions to science and acknowledge the best work by scientists from the global South.

TWAS, founded in 1983 by a group of scientists under the leadership of Pakistani physicist and Nobel laureate, Abdus Salam, believes that developing nations – by growing strength in science and engineering – will be able to address challenges such as hunger, disease, and poverty, through their knowledge and skills.

TWAS is represented in 100 countries, and of the more than a thousand elected fellows, 14 are Nobel laureates. Eighty-four percent of these fellows are from developing nations. TWAS fellows are also some of the world’s most accomplished scientists.

News Archive

Heart-valve studies receive international recognition
2017-07-11

 Description: Heart-valve studies  Tags: Heart-valve studies  

Prof Francis Smit, Head of the Department of
Cardiothoracic Surgery at the UFS, and Manager of the
Robert WM Frater Cardiovascular Research Centre, with
Kyle Davis, Mechanical Engineer at the centre.

Photo: Rulanzen Martin

Three heart-valve studies which have been developed at the Robert WM Frater Cardiovascular Research Centre at the School of Medicine at the University of the Free State (UFS) were recently presented in Monte Carlo at the conference of the prestigious global Heart Valve Society (HVS).

These studies are all headed by Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS, and Manager of the Robert WM Frater Cardiovascular Research Centre.
Prof Smit says the HVS is a combination of the former heart-valve societies of Europe and the US. “Studies on heart-valve disease, heart-valve-related products and operations, as well as the design and development of new valves were presented. There are both clinical and development divisions.

He says the study in which the hemodynamics of their redesigned mechanical poppet valve was compared to a commercial bi-leaflet mechanical heart valve, was named as the best poster presentation in the experimental valve development and numerical flow dynamics division. The study, which was presented by Kyle Davis, mechanical engineer at the centre, competed against some of the best heart-valve research units in the world.

The redesigned valve, based on the 1960s Cape Town poppet valve, has the potential to provide a low-cost solution for mechanical heart-valve replacement. It is possible to produce the titanium ring with 3-D printers and is, together with the silicon poppet valve, extremely inexpensive compared to current mechanical valve-manufacturing processes.
The advantages of this valve over current mechanical valves is that, due to the effective and laminar flow characteristics, as well as the simple locking mechanisms, there is a reduced chance of valve thrombosis, and the need for anti-clotting drugs is therefore limited.

It was also confirmed that the new valve more than meets the published FDA (Federal Drug Agency) requirements, which determine the minimum standards of valves for human use in the US.

The redesigned valve also has a very low platelet activation impact, which is responsible for platelet thrombosis and leads to valve thrombosis or strokes. This valve is another heart-valve project by the centre, which is also in the process of evaluating a tri-leaflet polyurethane valve developed by them.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept