Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2020 | Story Dikgapane Makhetha | Photo Supplied
UFS partners
At the signing of the Memorandum of Agreement between the UFS and local community radio stations were, from the left (front row): Lebogang Matolong, Station Manager of Motheo FM, and Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement. At the back (standing), are from the left: Mohau Rampeta, Programme Manager of Motheo FM, and Bishop Billyboy Ramahlele, Director: Community Engagement.

In response to the current COVID-19 pandemic, the Directorate: Community Engagement (CE) has initiated an innovative platform on which students can continue to engage with university community partners, and at the same time be assessed for their service-learning and community engagement projects. 

The E-Engagement approach also meets the University of the Free State’s (UFS) strategic mandate to be a caring, responsive, and engaged university. Coordinated by the UFS CE office, academic staff and students are scheduled to engage with the community partners through radio broadcasts and virtual mode platforms. Informative content that has been researched, prepared, and presented by students in a pre-recorded format, will address significant issues brought about by the surge of COVID-19, creating a breeding ground for some of the societal ills, such as gender-based violence (GBV).

In order to establish sustainable relationships with community radio stations, a Memorandum of Agreement (MOA) with two local community radio stations was signed on the UFS Bloemfontein Campus on 10 October 2020. Prof Puleng LenkaBula, the Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, and Bishop Billyboy Ramahlele, CE Director, participated in the commitment to formalise the relationship between the UFS and the two radio stations, Mosupatsela FM and Motheo FM.

Master’s students from the Department of Psychology have produced and pre-recorded podcasts on community psychology. Their topics covered grief and self-compassion. The Department of Nutrition and Dietetics presented topics on a healthy lifestyle and diet. Fourth-year students from the School of Nursing have engaged new mothers concerning post-natal care. The School of Clinical Medicine has addressed the warning signs of burnout and preventative measures.

Bishop Ramahlele emphasised the importance of sustained relationship, which is expected to create further opportunities for interaction through partnerships in skills training (ICT) and the sharing of resources, including consultations through conference platforms. Prof LenkaBula highlighted the significance of the MOA by applauding the initiative, which has unlimited potential to ensure national development through student engagement, since universities create development sites that can be transferred further into the community. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept