Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2020 | Story Dikgapane Makhetha | Photo Supplied
UFS partners
At the signing of the Memorandum of Agreement between the UFS and local community radio stations were, from the left (front row): Lebogang Matolong, Station Manager of Motheo FM, and Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement. At the back (standing), are from the left: Mohau Rampeta, Programme Manager of Motheo FM, and Bishop Billyboy Ramahlele, Director: Community Engagement.

In response to the current COVID-19 pandemic, the Directorate: Community Engagement (CE) has initiated an innovative platform on which students can continue to engage with university community partners, and at the same time be assessed for their service-learning and community engagement projects. 

The E-Engagement approach also meets the University of the Free State’s (UFS) strategic mandate to be a caring, responsive, and engaged university. Coordinated by the UFS CE office, academic staff and students are scheduled to engage with the community partners through radio broadcasts and virtual mode platforms. Informative content that has been researched, prepared, and presented by students in a pre-recorded format, will address significant issues brought about by the surge of COVID-19, creating a breeding ground for some of the societal ills, such as gender-based violence (GBV).

In order to establish sustainable relationships with community radio stations, a Memorandum of Agreement (MOA) with two local community radio stations was signed on the UFS Bloemfontein Campus on 10 October 2020. Prof Puleng LenkaBula, the Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, and Bishop Billyboy Ramahlele, CE Director, participated in the commitment to formalise the relationship between the UFS and the two radio stations, Mosupatsela FM and Motheo FM.

Master’s students from the Department of Psychology have produced and pre-recorded podcasts on community psychology. Their topics covered grief and self-compassion. The Department of Nutrition and Dietetics presented topics on a healthy lifestyle and diet. Fourth-year students from the School of Nursing have engaged new mothers concerning post-natal care. The School of Clinical Medicine has addressed the warning signs of burnout and preventative measures.

Bishop Ramahlele emphasised the importance of sustained relationship, which is expected to create further opportunities for interaction through partnerships in skills training (ICT) and the sharing of resources, including consultations through conference platforms. Prof LenkaBula highlighted the significance of the MOA by applauding the initiative, which has unlimited potential to ensure national development through student engagement, since universities create development sites that can be transferred further into the community. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept