Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2020 | Story Dikgapane Makhetha | Photo Supplied
UFS partners
At the signing of the Memorandum of Agreement between the UFS and local community radio stations were, from the left (front row): Lebogang Matolong, Station Manager of Motheo FM, and Prof Puleng LenkaBula, Vice-Rector: Institutional Change, Student Affairs, and Community Engagement. At the back (standing), are from the left: Mohau Rampeta, Programme Manager of Motheo FM, and Bishop Billyboy Ramahlele, Director: Community Engagement.

In response to the current COVID-19 pandemic, the Directorate: Community Engagement (CE) has initiated an innovative platform on which students can continue to engage with university community partners, and at the same time be assessed for their service-learning and community engagement projects. 

The E-Engagement approach also meets the University of the Free State’s (UFS) strategic mandate to be a caring, responsive, and engaged university. Coordinated by the UFS CE office, academic staff and students are scheduled to engage with the community partners through radio broadcasts and virtual mode platforms. Informative content that has been researched, prepared, and presented by students in a pre-recorded format, will address significant issues brought about by the surge of COVID-19, creating a breeding ground for some of the societal ills, such as gender-based violence (GBV).

In order to establish sustainable relationships with community radio stations, a Memorandum of Agreement (MOA) with two local community radio stations was signed on the UFS Bloemfontein Campus on 10 October 2020. Prof Puleng LenkaBula, the Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, and Bishop Billyboy Ramahlele, CE Director, participated in the commitment to formalise the relationship between the UFS and the two radio stations, Mosupatsela FM and Motheo FM.

Master’s students from the Department of Psychology have produced and pre-recorded podcasts on community psychology. Their topics covered grief and self-compassion. The Department of Nutrition and Dietetics presented topics on a healthy lifestyle and diet. Fourth-year students from the School of Nursing have engaged new mothers concerning post-natal care. The School of Clinical Medicine has addressed the warning signs of burnout and preventative measures.

Bishop Ramahlele emphasised the importance of sustained relationship, which is expected to create further opportunities for interaction through partnerships in skills training (ICT) and the sharing of resources, including consultations through conference platforms. Prof LenkaBula highlighted the significance of the MOA by applauding the initiative, which has unlimited potential to ensure national development through student engagement, since universities create development sites that can be transferred further into the community. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept