Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story André Damons | Photo Supplied
The KAT Walk mini (Omni Directional Treadmill) used to reduce and eliminate cybersickness.

An officer at the School of Nursing Simulation Laboratory of the University of the Free State (UFS) is aiming to cure or minimise cybersickness in nursing students with a popular virtual reality gaming tool.

Bennie Botha, who is acting as head of the Information, Communication and Simulation Technology at the School of Nursing Simulation Laboratory, developed a virtual environment in which nursing students use immersive virtual reality to perform a simulation scenario. This is part of his master’s degree in Computer Science and Informatics under the supervision of Dr Lizette de Wet and co-supervisor Prof Yvonne Botma.

Botha received his master’s degree with distinction during the UFS virtual graduation in October.

Cybersickness

Botha had found that some people experience cybersickness (almost like motion sickness), which is a significant issue and difficult to address. This he would now try to address with a virtual reality gaming tool – the KAT Walk mini.

According to Botha this technology has never been attempted for health-care education and is mostly used in military and pilot training and is very popular as a gaming platform for hardcore virtual reality gamers.

“To test and provide a possible solution I am going to incorporate the KAT Walk mini (Omni Directional Treadmill – almost like the Ready Player One concept) into which students are strapped and they can physically walk and turn around without the need for large open spaces.

“With this I will try and determine whether it decreases or even eliminates cybersickness due to sensory mismatch while using immersive virtual reality. I wanted to provide possible evidence of what causes cybersickness and want to enable virtual reality as an educational tool, not just for gaming. I think immersive virtual reality has a bright future if the kinks (of which the biggest is cybersickness) can be minimised,” says Botha.

Getting funding

He successfully applied for funding in 2020 and received R150 000.

“I must say I was surprised when I got the approval letter. I thought that due to the economic status it would not go through, but I was really glad when I got the approval as this is my dream and I love working with virtual reality for health care. The grant has made my dream come true, especially considering that this sounds more like something from science fiction,” says Botha.

The project started in November 2017 when Botha first conceptualised the idea and took it to Dr De Wet. He then started it as a masters’ project in 2018 and completed it at the end of 2019.

An equal opportunity for students

Botha says immersive virtual reality gives students more time and a more accessible platform where they can practise their skills as it is easy to use and easy to set up compared to other modalities of simulation. But the biggest task is developing a usable virtual environment that gives students more time to practise and increase their theory and practical integration which is key to providing highly skilled health-care professionals.

“By seeking and possibly implementing the new research, I aim to provide students an equal opportunity to partake in immersive virtual reality simulation as it currently excludes people who are prone to high levels of cybersickness. This means they cannot benefit from the same opportunities as other students do.

“I believe it can help all nursing students in SA and Africa as it is much more cost-effective than high-technology manikins and is easier to set up and access with much less manual input required to make it work (apart from the initial development.).”

News Archive

DNA sequencer launched at the UFS
2013-11-25

Dr Gansen Pillay, Deputy Chief Executive Officer of the National Research Foundation, explaining to the scholars what will be expected of them.

The University of the Free State (UFS) can now collect immensely valuable data on drug resistance in HIV/Aids and TB with the new DNA sequencer that was launched recently at the International workshop on HIV/AIDS and TB drug resistance at the Bloemfontein Campus.

The DNA sequencer will allow the Free State province to produce viral and bacterial genetic data to fight the local development of HIV/ Aids and TB drug resistance.

The HIV and TB epidemics have expanded very fast and South Africa now has the largest HIV and TB treatment programme in the world, with over 2 million patients on treatment. However, these successful treatment programmes are now being threatened by the appearance of drug resistance.

The Free State province has been at the forefront of fighting HIV drug resistance in South Africa and has one of the most advanced treatment programmes for the management of resistance strains in the country. In addition, researchers at the University of the Free State are leading partners in the Southern African Treatment and Resistance Network (SATuRN; www.bioafrica.net/saturn), a research network that has trained over 2 000 medical officers in the treatment of drug resistance strains.

The Department of Medical Microbiology and Virology in the Medical School at the UFS has partnered with the provincial department of health, the Medical Research Council (MRC) and the Delegation of the European Union to South Africa to fund a dedicated DNA sequencer machine that will be used to generate HIV and TB drug-resistance results. This new machine will enable cutting-edge research to take place, using the data in the province and, importantly, support patients with resistance strains to have access to advanced genotypic testing techniques.

“HIV drug resistance is a very serious problem in South Africa, and the recent advances in DNA testing technology allow clinicians in the province to access drug resistance testing, which enables them to manage patients appropriately who fail treatment, and use the results to cost-effectively extend and improve patients’ lives,” says Dr Cloete van Vuuren, Specialist in Infectious Diseases at the UFS’s Faculty of Health.

Dr Dominique Goedhals, pathologist from the Department of Medical Microbiology and Virology at the UFS, adds: “We have been looking forward to expanding our work with the clinicians and researchers, using DNA sequencing to shed light on the causes and consequences of drug resistance in urban and rural settings in the province.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept