Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story André Damons | Photo Supplied
The KAT Walk mini (Omni Directional Treadmill) used to reduce and eliminate cybersickness.

An officer at the School of Nursing Simulation Laboratory of the University of the Free State (UFS) is aiming to cure or minimise cybersickness in nursing students with a popular virtual reality gaming tool.

Bennie Botha, who is acting as head of the Information, Communication and Simulation Technology at the School of Nursing Simulation Laboratory, developed a virtual environment in which nursing students use immersive virtual reality to perform a simulation scenario. This is part of his master’s degree in Computer Science and Informatics under the supervision of Dr Lizette de Wet and co-supervisor Prof Yvonne Botma.

Botha received his master’s degree with distinction during the UFS virtual graduation in October.

Cybersickness

Botha had found that some people experience cybersickness (almost like motion sickness), which is a significant issue and difficult to address. This he would now try to address with a virtual reality gaming tool – the KAT Walk mini.

According to Botha this technology has never been attempted for health-care education and is mostly used in military and pilot training and is very popular as a gaming platform for hardcore virtual reality gamers.

“To test and provide a possible solution I am going to incorporate the KAT Walk mini (Omni Directional Treadmill – almost like the Ready Player One concept) into which students are strapped and they can physically walk and turn around without the need for large open spaces.

“With this I will try and determine whether it decreases or even eliminates cybersickness due to sensory mismatch while using immersive virtual reality. I wanted to provide possible evidence of what causes cybersickness and want to enable virtual reality as an educational tool, not just for gaming. I think immersive virtual reality has a bright future if the kinks (of which the biggest is cybersickness) can be minimised,” says Botha.

Getting funding

He successfully applied for funding in 2020 and received R150 000.

“I must say I was surprised when I got the approval letter. I thought that due to the economic status it would not go through, but I was really glad when I got the approval as this is my dream and I love working with virtual reality for health care. The grant has made my dream come true, especially considering that this sounds more like something from science fiction,” says Botha.

The project started in November 2017 when Botha first conceptualised the idea and took it to Dr De Wet. He then started it as a masters’ project in 2018 and completed it at the end of 2019.

An equal opportunity for students

Botha says immersive virtual reality gives students more time and a more accessible platform where they can practise their skills as it is easy to use and easy to set up compared to other modalities of simulation. But the biggest task is developing a usable virtual environment that gives students more time to practise and increase their theory and practical integration which is key to providing highly skilled health-care professionals.

“By seeking and possibly implementing the new research, I aim to provide students an equal opportunity to partake in immersive virtual reality simulation as it currently excludes people who are prone to high levels of cybersickness. This means they cannot benefit from the same opportunities as other students do.

“I believe it can help all nursing students in SA and Africa as it is much more cost-effective than high-technology manikins and is easier to set up and access with much less manual input required to make it work (apart from the initial development.).”

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept