Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story André Damons | Photo Supplied
The KAT Walk mini (Omni Directional Treadmill) used to reduce and eliminate cybersickness.

An officer at the School of Nursing Simulation Laboratory of the University of the Free State (UFS) is aiming to cure or minimise cybersickness in nursing students with a popular virtual reality gaming tool.

Bennie Botha, who is acting as head of the Information, Communication and Simulation Technology at the School of Nursing Simulation Laboratory, developed a virtual environment in which nursing students use immersive virtual reality to perform a simulation scenario. This is part of his master’s degree in Computer Science and Informatics under the supervision of Dr Lizette de Wet and co-supervisor Prof Yvonne Botma.

Botha received his master’s degree with distinction during the UFS virtual graduation in October.

Cybersickness

Botha had found that some people experience cybersickness (almost like motion sickness), which is a significant issue and difficult to address. This he would now try to address with a virtual reality gaming tool – the KAT Walk mini.

According to Botha this technology has never been attempted for health-care education and is mostly used in military and pilot training and is very popular as a gaming platform for hardcore virtual reality gamers.

“To test and provide a possible solution I am going to incorporate the KAT Walk mini (Omni Directional Treadmill – almost like the Ready Player One concept) into which students are strapped and they can physically walk and turn around without the need for large open spaces.

“With this I will try and determine whether it decreases or even eliminates cybersickness due to sensory mismatch while using immersive virtual reality. I wanted to provide possible evidence of what causes cybersickness and want to enable virtual reality as an educational tool, not just for gaming. I think immersive virtual reality has a bright future if the kinks (of which the biggest is cybersickness) can be minimised,” says Botha.

Getting funding

He successfully applied for funding in 2020 and received R150 000.

“I must say I was surprised when I got the approval letter. I thought that due to the economic status it would not go through, but I was really glad when I got the approval as this is my dream and I love working with virtual reality for health care. The grant has made my dream come true, especially considering that this sounds more like something from science fiction,” says Botha.

The project started in November 2017 when Botha first conceptualised the idea and took it to Dr De Wet. He then started it as a masters’ project in 2018 and completed it at the end of 2019.

An equal opportunity for students

Botha says immersive virtual reality gives students more time and a more accessible platform where they can practise their skills as it is easy to use and easy to set up compared to other modalities of simulation. But the biggest task is developing a usable virtual environment that gives students more time to practise and increase their theory and practical integration which is key to providing highly skilled health-care professionals.

“By seeking and possibly implementing the new research, I aim to provide students an equal opportunity to partake in immersive virtual reality simulation as it currently excludes people who are prone to high levels of cybersickness. This means they cannot benefit from the same opportunities as other students do.

“I believe it can help all nursing students in SA and Africa as it is much more cost-effective than high-technology manikins and is easier to set up and access with much less manual input required to make it work (apart from the initial development.).”

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept