Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 December 2020 | Story André Damons | Photo Supplied
The KAT Walk mini (Omni Directional Treadmill) used to reduce and eliminate cybersickness.

An officer at the School of Nursing Simulation Laboratory of the University of the Free State (UFS) is aiming to cure or minimise cybersickness in nursing students with a popular virtual reality gaming tool.

Bennie Botha, who is acting as head of the Information, Communication and Simulation Technology at the School of Nursing Simulation Laboratory, developed a virtual environment in which nursing students use immersive virtual reality to perform a simulation scenario. This is part of his master’s degree in Computer Science and Informatics under the supervision of Dr Lizette de Wet and co-supervisor Prof Yvonne Botma.

Botha received his master’s degree with distinction during the UFS virtual graduation in October.

Cybersickness

Botha had found that some people experience cybersickness (almost like motion sickness), which is a significant issue and difficult to address. This he would now try to address with a virtual reality gaming tool – the KAT Walk mini.

According to Botha this technology has never been attempted for health-care education and is mostly used in military and pilot training and is very popular as a gaming platform for hardcore virtual reality gamers.

“To test and provide a possible solution I am going to incorporate the KAT Walk mini (Omni Directional Treadmill – almost like the Ready Player One concept) into which students are strapped and they can physically walk and turn around without the need for large open spaces.

“With this I will try and determine whether it decreases or even eliminates cybersickness due to sensory mismatch while using immersive virtual reality. I wanted to provide possible evidence of what causes cybersickness and want to enable virtual reality as an educational tool, not just for gaming. I think immersive virtual reality has a bright future if the kinks (of which the biggest is cybersickness) can be minimised,” says Botha.

Getting funding

He successfully applied for funding in 2020 and received R150 000.

“I must say I was surprised when I got the approval letter. I thought that due to the economic status it would not go through, but I was really glad when I got the approval as this is my dream and I love working with virtual reality for health care. The grant has made my dream come true, especially considering that this sounds more like something from science fiction,” says Botha.

The project started in November 2017 when Botha first conceptualised the idea and took it to Dr De Wet. He then started it as a masters’ project in 2018 and completed it at the end of 2019.

An equal opportunity for students

Botha says immersive virtual reality gives students more time and a more accessible platform where they can practise their skills as it is easy to use and easy to set up compared to other modalities of simulation. But the biggest task is developing a usable virtual environment that gives students more time to practise and increase their theory and practical integration which is key to providing highly skilled health-care professionals.

“By seeking and possibly implementing the new research, I aim to provide students an equal opportunity to partake in immersive virtual reality simulation as it currently excludes people who are prone to high levels of cybersickness. This means they cannot benefit from the same opportunities as other students do.

“I believe it can help all nursing students in SA and Africa as it is much more cost-effective than high-technology manikins and is easier to set up and access with much less manual input required to make it work (apart from the initial development.).”

News Archive

UFS professor addresses genetically modified food in South Africa in inaugural lecture
2016-09-23

Description: Chris Viljoen inaugural lecture Tags: Chris Viljoen inaugural lecture

At the inaugural lecture were, from the left front,
Prof Lis Lange, Vice Rector: Academic;
Prof Chris Viljoen; Prof Gert van Zyl,
Dean: Faculty of Health Sciences; back: Prof Marius Coetzee,
Head of Department of Haematology and Cell Biology;
and Dr Lynette van der Merwe, Undergraduate
Programme Director.
Photo: Stephen Collett

The first genetically modified (GM) crops in South Africa were planted in 1998. Eighteen years later, the country is one of the largest producers of GM food in the world. Those in support of genetically modified crops say this process is the only way to feed a rapidly growing world population. But those who criticise GM food describe it as a threat to the environment and safety of the population. Who is right? According to Prof Chris Viljoen of the Department of Haematology and Cell Biology at the University of the Free State, neither position is well-founded.

GM crops play a vital role in food security

While GM crops have an important role to play in increasing food production, the technology is only part of the solution to providing sufficient food for a growing world population. The major genetically modified crops produced in the world include soybean, cotton, maize and canola. However, the authenticity of food labelling and the long-term safety of GM food are issues that consumers are concerned about.

Safety and labelling of GM food important in South Africa
In his inaugural lecture on the subject “Are you really going to eat that?” Prof Viljoen addressed the importance of the safety and labelling of GM food in the country. “In order for food to be sustainable, production needs to be economically and environmentally sustainable. On the other hand, food integrity, including food quality, authenticity and safety need to be ensured,” Prof Viljoen said. 

Labelling of food products for genetic modification was mandatory in South Africa, he went on to say. “It allows consumers the right of choice whether to eat genetically modified foods or not.” The Consumer Protection Act of 2008 requires food ingredients containing more than 5% of GM content to be labelled. 

GMO Testing Facility world leader in food diagnostic testing
In 1999, Prof Viljoen spearheaded research in developing a GM diagnostic testing platform, and in 2003, a commercial diagnostic platform for GM status certification, called the GMO Testing Facility, was founded. The facility is a licensed Eurofins GeneScan laboratory   a world leader in food diagnostic testing   and provides diagnostic detection and quantification of genetically modified organisms (GMOs) in grain and processed foods for the local and international market.

Molecular diagnostic technology the future of food integrity, authenticity and safety
With GM labelling now well-established in South Africa, the next challenge is to establish the use of molecular diagnostic technology to ensure that food integrity, including food authenticity and safety is maintained, said Prof Viljoen.

“To the question ‘Are you really going to eat that?’ the answer is ‘yes’, but let’s continue doing research to make sure that what we eat is safe and authentic.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept