Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 February 2020 | Story Xolisa Mnukwa | Photo Charl Devenish
Kovsie Eco vehicle parade
A highlight for first-year and senior students is the ACT eco-vehicle building and parade through the streets of Bloemfontein.

Sunny skies, cheerful faces, and an overall great atmosphere surfed the University of the Free State (UFS) Bloemfontein Campus on Saturday, 1 February 2020 for the final series of events in the Kovsie ACT 2020 line-up.

The eco-vehicle parade kick-started the activities for the day and saw various student teams displaying their personalised pit-stop ‘sculptures’ along the streets of Bloemfontein.  UFS residence teams Sonverlief (Houses Sonnedou, Veritas, Madelief); Soetmarmentum (Houses Soetdoring, Marjolein, Armentum); and Beykasium (Houses Beyers Naudé, Akasia, Imperium) came in first, second, and third respectively, obtaining the highest scores out of nine teams for their pit-stop sculpture constructions. 
 
Following the parade, there were a number of fun but competitive eco-vehicle races between the teams. This included the Drag Race, Obstacle Course Race, Formula E Race, Endurance Race, and the Slalom Course Race that took place on the Mokete Square. 

In the evening, students were serenaded by artists such as Early B and Spoegwolf. They danced to performances from the latest Amapiano music sensation, Kabza de Small, and legendary deep-house music duo, Black Motion, at the Rag Farm. 

Assistant Director of UFS Student Life and Director of the Kovsie ACT office, Karen Scheepers, earlier urged students to get more involved in student-life programmes such as Kovsie ACT, in order to equip themselves with a variety of skills and a fulfilling university experience.

A number of senior and first-year students who were part of the action on the UFS Bloemfontein Campus this past Saturday, can attest to Scheepers’ advice.
“I’ve been looking forward to starting university for the longest time, and I am glad that I ended up at the UFS. I don’t feel alone, I feel like I can actually do this,” said first-year Psychology student, Thulisa Shezi.

“University isn’t as bad as everyone thinks it is, it’s just a matter of staying motivated, doing your work, and surrounding yourself with the right people in the process.” – Fourth-year Business Management student, Earl van der Westhuisen.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept