Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 February 2020 | Story Xolisa Mnukwa | Photo Charl Devenish
Kovsie Eco vehicle parade
A highlight for first-year and senior students is the ACT eco-vehicle building and parade through the streets of Bloemfontein.

Sunny skies, cheerful faces, and an overall great atmosphere surfed the University of the Free State (UFS) Bloemfontein Campus on Saturday, 1 February 2020 for the final series of events in the Kovsie ACT 2020 line-up.

The eco-vehicle parade kick-started the activities for the day and saw various student teams displaying their personalised pit-stop ‘sculptures’ along the streets of Bloemfontein.  UFS residence teams Sonverlief (Houses Sonnedou, Veritas, Madelief); Soetmarmentum (Houses Soetdoring, Marjolein, Armentum); and Beykasium (Houses Beyers Naudé, Akasia, Imperium) came in first, second, and third respectively, obtaining the highest scores out of nine teams for their pit-stop sculpture constructions. 
 
Following the parade, there were a number of fun but competitive eco-vehicle races between the teams. This included the Drag Race, Obstacle Course Race, Formula E Race, Endurance Race, and the Slalom Course Race that took place on the Mokete Square. 

In the evening, students were serenaded by artists such as Early B and Spoegwolf. They danced to performances from the latest Amapiano music sensation, Kabza de Small, and legendary deep-house music duo, Black Motion, at the Rag Farm. 

Assistant Director of UFS Student Life and Director of the Kovsie ACT office, Karen Scheepers, earlier urged students to get more involved in student-life programmes such as Kovsie ACT, in order to equip themselves with a variety of skills and a fulfilling university experience.

A number of senior and first-year students who were part of the action on the UFS Bloemfontein Campus this past Saturday, can attest to Scheepers’ advice.
“I’ve been looking forward to starting university for the longest time, and I am glad that I ended up at the UFS. I don’t feel alone, I feel like I can actually do this,” said first-year Psychology student, Thulisa Shezi.

“University isn’t as bad as everyone thinks it is, it’s just a matter of staying motivated, doing your work, and surrounding yourself with the right people in the process.” – Fourth-year Business Management student, Earl van der Westhuisen.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept