Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2020 | Story Cobus van Jaarsveld | Photo Charl Devenish
Traffic Circle on the UFS Bloemfontein Campus
The Department of Protection Services shares how to #BSafe at traffic circles.

For the majority of drivers, one of the most confusing driving laws is the correct use of a traffic circle, especially in Bloemfontein with the large number of smaller traffic circles constructed over the past few years; also across the University of the Free State (UFS) Bloemfontein Campus.

“In fact, many motorists do not know that there is a difference between a larger traffic circle and a mini traffic circle, other than their size. Can you really be frustrated if someone cuts you off at a traffic circle if you don't know the rules? Arrive Alive has shed some light on the issue,” said Cobus van Jaarsveld, Assistant Director: Threat Detection, Investigations and Liaison in the UFS Department of Protection Services.

What is the difference between the two circles?

A traffic circle is classified as large when it has a minimum diameter of about 16 metres and a 1,5 to 2 metre flattened kerb, which allows heavy vehicles to drive onto a small section of the circle. A mini traffic circle is normally not more than seven to ten metres in diameter and the entire circle is mountable for heavy vehicles.

Are there different rules for each?

Yes – the rule of thumb is that mini traffic circles, which are usually found in residential areas, have the same rules as a four-way stop – first come first served. For larger traffic circles, which are usually found at busy crossings to assist with the traffic flow, you must give way to the right.

Rules to remember at a large traffic circle

As you arrive at a large traffic circle, traffic coming from your right has right of way, regardless of how many cars there are. Wait until there is a gap in the traffic and then ease slowly into the circle. Watch out for other traffic in the circle and be aware that they may not be using their indicators.

Use your indicators

Signal when you are going to turn – switch your indicator on immediately after passing the exit prior to the one you intend taking. If you are taking the first exit, i.e. you're turning left, then flick on your left indicator and keep in the outside/left-hand lane. Keeping in the outside/left-hand lane also works well if you're continuing straight ahead, as your exit is very close. After you've passed the left-turn exit and yours is next, signal left and you're free. If you're turning right or performing a U-turn, keep in the inside/right-hand lane. Only signal left and change into the left-hand lane once you've passed the other exits and only yours is ahead.

Rules to remember at a mini traffic circle

The first vehicle to cross the line has the right of way, so it really works on the same principle as a four-way stop or yield sign. Proceed in a clockwise direction around the circle, without driving on it.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept