Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2020 | Story Cobus van Jaarsveld | Photo Charl Devenish
Traffic Circle on the UFS Bloemfontein Campus
The Department of Protection Services shares how to #BSafe at traffic circles.

For the majority of drivers, one of the most confusing driving laws is the correct use of a traffic circle, especially in Bloemfontein with the large number of smaller traffic circles constructed over the past few years; also across the University of the Free State (UFS) Bloemfontein Campus.

“In fact, many motorists do not know that there is a difference between a larger traffic circle and a mini traffic circle, other than their size. Can you really be frustrated if someone cuts you off at a traffic circle if you don't know the rules? Arrive Alive has shed some light on the issue,” said Cobus van Jaarsveld, Assistant Director: Threat Detection, Investigations and Liaison in the UFS Department of Protection Services.

What is the difference between the two circles?

A traffic circle is classified as large when it has a minimum diameter of about 16 metres and a 1,5 to 2 metre flattened kerb, which allows heavy vehicles to drive onto a small section of the circle. A mini traffic circle is normally not more than seven to ten metres in diameter and the entire circle is mountable for heavy vehicles.

Are there different rules for each?

Yes – the rule of thumb is that mini traffic circles, which are usually found in residential areas, have the same rules as a four-way stop – first come first served. For larger traffic circles, which are usually found at busy crossings to assist with the traffic flow, you must give way to the right.

Rules to remember at a large traffic circle

As you arrive at a large traffic circle, traffic coming from your right has right of way, regardless of how many cars there are. Wait until there is a gap in the traffic and then ease slowly into the circle. Watch out for other traffic in the circle and be aware that they may not be using their indicators.

Use your indicators

Signal when you are going to turn – switch your indicator on immediately after passing the exit prior to the one you intend taking. If you are taking the first exit, i.e. you're turning left, then flick on your left indicator and keep in the outside/left-hand lane. Keeping in the outside/left-hand lane also works well if you're continuing straight ahead, as your exit is very close. After you've passed the left-turn exit and yours is next, signal left and you're free. If you're turning right or performing a U-turn, keep in the inside/right-hand lane. Only signal left and change into the left-hand lane once you've passed the other exits and only yours is ahead.

Rules to remember at a mini traffic circle

The first vehicle to cross the line has the right of way, so it really works on the same principle as a four-way stop or yield sign. Proceed in a clockwise direction around the circle, without driving on it.

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept