Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2020 | Story Cobus van Jaarsveld | Photo Charl Devenish
Traffic Circle on the UFS Bloemfontein Campus
The Department of Protection Services shares how to #BSafe at traffic circles.

For the majority of drivers, one of the most confusing driving laws is the correct use of a traffic circle, especially in Bloemfontein with the large number of smaller traffic circles constructed over the past few years; also across the University of the Free State (UFS) Bloemfontein Campus.

“In fact, many motorists do not know that there is a difference between a larger traffic circle and a mini traffic circle, other than their size. Can you really be frustrated if someone cuts you off at a traffic circle if you don't know the rules? Arrive Alive has shed some light on the issue,” said Cobus van Jaarsveld, Assistant Director: Threat Detection, Investigations and Liaison in the UFS Department of Protection Services.

What is the difference between the two circles?

A traffic circle is classified as large when it has a minimum diameter of about 16 metres and a 1,5 to 2 metre flattened kerb, which allows heavy vehicles to drive onto a small section of the circle. A mini traffic circle is normally not more than seven to ten metres in diameter and the entire circle is mountable for heavy vehicles.

Are there different rules for each?

Yes – the rule of thumb is that mini traffic circles, which are usually found in residential areas, have the same rules as a four-way stop – first come first served. For larger traffic circles, which are usually found at busy crossings to assist with the traffic flow, you must give way to the right.

Rules to remember at a large traffic circle

As you arrive at a large traffic circle, traffic coming from your right has right of way, regardless of how many cars there are. Wait until there is a gap in the traffic and then ease slowly into the circle. Watch out for other traffic in the circle and be aware that they may not be using their indicators.

Use your indicators

Signal when you are going to turn – switch your indicator on immediately after passing the exit prior to the one you intend taking. If you are taking the first exit, i.e. you're turning left, then flick on your left indicator and keep in the outside/left-hand lane. Keeping in the outside/left-hand lane also works well if you're continuing straight ahead, as your exit is very close. After you've passed the left-turn exit and yours is next, signal left and you're free. If you're turning right or performing a U-turn, keep in the inside/right-hand lane. Only signal left and change into the left-hand lane once you've passed the other exits and only yours is ahead.

Rules to remember at a mini traffic circle

The first vehicle to cross the line has the right of way, so it really works on the same principle as a four-way stop or yield sign. Proceed in a clockwise direction around the circle, without driving on it.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept